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Introduction  

Chemical fertilizers (CF), pesticides, herbicides, and 

hormones all play a larger role in modern agriculture 

than they do in traditional farming [Prasad, 2015; 

Prasad, 2017; Prasad, 2021a, b; Prasad, 2022a, b, 

c]. Although it has been shown to boost crop, 

vegetable, and fruit yield [Tilman, 2002], it has also 

led to several detrimental consequences on the 

environment, such as water, soil, and food 

contamination, and deterioration of soil quality 

[Prasad, 2017; Prasad, 2021a; Guo,2015]. 

Additionally, the contemporary agricultural 

ecosystem's (CAS) plant and microbial biodiversity 

have decreased [Yu, 2015]. The food supply still 

contains a number of harmful substances, including 

those with high eco-toxicity and synergistic toxicity, 

which may accumulate up the food chain and pose a 

hazard to human health (HH) [Laetz,2009; 
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Endophytic microorganisms are symbionts that live inside plant tissues and have been studied for their 

potential growth-promoting effects on plants and their beneficial involvement in plants’ responses to various 

stresses. Endophytic microorganisms play an important role in plant health, and this research looks at the 

processes they stimulate to increase plant tolerance to a variety of stresses. The endophytic microbial 

population boosts plant development by creating secondary active chemicals that defend the plant against 

pests and diseases. Endophytes also generate extracellular enzymes that are essential to the colonization 

of endophytes inside the plant host. Microbial endophytes may act as growth-promoting agents for plants 

by producing phytohormones and assisting plant development in polluted soils by degrading toxic chemicals. 

Endophytes regulate plant development via many mechanisms in response to stresses such as salt, 

drought, temperature, heavy metal stress, and nutritional stress. 

The glycoprotein glomalin-related soil protein (GRSP) is produced by the arbuscular mycorrhizal fungus 

(AM fungi) and is crucial to ecosystem health, the production of high-quality food, and ecological restoration. 

Soil globulin levels are highly associated with aggregate water stability (WS) and soil quality (SH). Since 

globulin contains carbon, it makes a non-negligible contribution to the Earth’s terrestrial carbon reservoir. 

The GESP-producing AM fungus are ubiquitous root symbionts that benefit plants in a wide variety of ways. 

Root nodules of legumes are home to soil bacteria (SB) called rhizobia, which fix nitrogen (LRN). Plant 

growth-promoting rhizobacteria (PGPR) are a class of free-living bacteria (FLB) that colonize the 

rhizosphere and improve root development (RG), which in turn improves plant growth (PG), productivity, 

and numerous plant growth-promoting substances (PGPS). During symbiosis, symbiotic fungi (SF) and 

bacteria reproduce using host resources to replenish the soil, endure between hosts in the soil, and discover 

and infect new hosts. The present publication emphasizes the significance of microbial symbionts and their 

interactions for nutrient management, effective for growth and productivity to the sustainable agricultural 

system (SAS), which boosts worldwide crop output. 

Keywords: endophytic microorganisms, microbial endophytes, glomalin am fungi, rhizobium 

 

 

https://www.mediresonline.org/journals/journal-of-microbes-and-research
mailto:info@mediresonline.org
https://portal.issn.org/resource/ISSN/2836-2187


 
Journal of Microbes and Research 

How to cite this article: Kamal Prasad. (2023). Symbiotic Endophytes of Glomalin AM Fungi, Rhizobium, and PGPR Potential Bio stimulants to Intensive Global Food Production for 

Sustainable Agriculture System. Journal of Microbes and Research. 2(2); DOI: 10.58489/2836-2187/012                           Page 2 of 23 

Prasad,2021a, b; Prasad,2022a, b, d, e]. Foods 

containing residues of herbicides and pesticides have 

been shown to cause serious health problems in HH 

[Cen et al. 2020; Prasad, 2021b, Prasad, 2022a, 

Prasad, 2022f]. Produced by AM fungus, GRSP is a 

massive glycoprotein crucial to ecosystem health, 

high-quality food production, and ecological 

restoration [Prasad,2021c]. Soil globulin levels are 

correlated with aggregate water stability (WS) and 

soil productivity (SP). Because of its carbon content, 

globulin represents a significant fraction of the Earth’s 

total carbon stock. Agroecosystem management 

affects globulin concentrations in soil. The carbon-

storing and function-facilitating roles of GRSPs are 

crucial. It has been challenging to biochemically 

characterize glomalin owing to the molecule's 

unusualness, resistance, and complexity. 

More than 90% of vascular plant species have a 

symbiotic connection with glomalin AM fungus, a kind 

of soil microorganism (SM) [Prasad,2017; Prasad 

and Pandey, 2012; Prasad and Deploey, 1999; 

Prasad and 2000; Prasad, 2020; Prasad, 2021b, 

Prasad, 2022f, g]. Their widespread presence 

throughout GE is best shown by the widespread 

presence of well-known plant hosts across the globe 

[Prasad, 2017; Prasad, 2021 a, b; Wang and Qiu, 

2006; Kivlin et al., 2011]. Fungi that produce AM 

belong to the subkingdom Mucoromycota and the 

phylum Glomeromycota, which has three classes 

(Glomeromycetes, Archaeosporomycetes, and 

Paraglomeromycetes [Tedersoo et al. 2018, Prasad 

et al., 2021a, b,]). 11 families and 25 genera make up 

the AM fungus [Schubler et al. 2001 and Spatafora et 

al. 2016]. There are now 336 different species of AM 

fungus, and only a few of dominating genera, 

including Acaulospora, Glomus, Gigaspora, 

Scutellospora, and Enterophospora, are more 

common in cultivated than in uncultivated areas. In 

terms of biostimulants production, the genus Glomus 

is by far the most common and widely available 

species in the globe [Prasad, 2021c]. [Prasad, 2021c; 

Siddiqui and Prechtel, 2008; Johns, 2020] The fungi 

of the genus Glomeromycota are obligate symbionts 

that rely on the carbon substrates given by their host 

plants (up to 20% of plant fixed carbon) for survival. 

Extraradical and intraradical hyphae, arbuscules, and 

the root apoplast interface all play a role in the fungi's 

ability to increase the availability of water and 

nutrients to their host plant [Prasad, 2017; Prasad, 

2021c, d, e; Prasad, 2021b; Parniske, 2008, Prasad 

et al., 2021c]. AM fungal symbiosis is the most 

common kind of mutualistic relationship between 

plants and microorganisms [Prasad, 2021a; Prasad, 

2020; Parniske, 2008]. It has been shown in a number 

of studies [Prasad, 2020; Prasad, 2021a; Siddiqui 

and Prechtel, 2008; Prasad, 2013; Prasad, 2020] that 

AM fungi are crucial to plant nutrition and 

development under stressful circumstances, and that 

they also boost other important ecosystem functions. 

Endophytes are microbial communities that live in 

healthy plant tissues such as stems, roots, leaves, 

and seeds without disrupting physiological plant 

activities or giving any disease symptoms to the 

tissues. Endophytes play crucial roles in proper host 

plant development, either via the digestion of 

secondary metabolites or nutrients or by avoiding the 

formation of plant disease signs by various 

pathogens. Microbes such as bacteria, 

actinomycetes, and fungi that live in symbiotic 

relationships with plants, known as endophytes, often 

colonize a network around the host plant, where they 

are protected from weather extremes and other 

stresses (Zhao et al. 2011; Passari et al. 2017). 

Below the line of vertical transmission in a plant, in 

the form of a seed, are hyphae that endophytic fungi 

use to get access to the kernels. Host plant cells 

invaded by endophytes were shown to be passed on 

in a somewhat different way both laterally and 

vertically (Tintjer et al. 2008). There has been a 

greater focus on understanding the transmission 

function of endophytic microbes, which has led to a 

greater focus on the processes involved in plant 

development with these microbes. The endophytic 

fungus species may spread from plant to plant within 

a population or community via the exchange of sexual 

spores or through asexual means (Tadych et al. 

2014). Roots of host plants get colonized by 

microorganisms such as bacteria, algae, fungi, and 

actinomycetes (Saharan and Nehra 2011; Prashar et 

al. 2014). Actinobacteria are the second most 

prevalent microorganisms in the rhizosphere, and 

they make up more than 30% of the total 

microorganisms in the soil (Glick 2014). Through the 

seeds, endophytes may travel from one rhizosphere 

to another. Microbial phytopathogens or nematodes 

cause them, and they spread rapidly through the 

endo-rhizosphere through the lateral root connection 

(Chi et al. 2005). Root hairs and intercellular gaps in 

the root epidermis provide additional entry points for 

bacterial endophytes to colonize their host plants 

(Hardoim et al. 2008). 

The rhizobia are the root-nodule symbionts (RNS) of 

leguminous plants and are thus considered soil 

bacteria (SB). Nitrogen fixed by rhizobia is 

comparable to that from synthetic ammonia synthesis 

on a global scale [Harwani et al., 2009; Gruber and 

Galloway, 2008]. However, certain rhizobia may grow 
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endophytically in non-legume plants (NLP), and non-

symbiotic rhizobia (NSR) often outnumber symbiotic 

genotypes in soil [Segovia et al. 1991]. Direct and 

indirect processes are at work here, with increased 

plant growth and production attributable to PGPR 

colonization of root systems and enhanced root 

branching. For improved growth, production, and soil 

fertility (SF) in a sustainable agricultural system, 

PGPR and INM work together more effectively (SAS). 

Live bacteria that lack the PGPR gene have beneficial 

impacts on plants via both direct and indirect 

pathways. Positive effects on water and nutrient 

absorption, as well as resistance to abiotic and biotic 

stress, have resulted from the use of Constructive 

Microbes (CM). The purpose of this publication is to 

provide a comprehensive overview of GRSP AM 

fungi, including their beneficial effects on host plant 

development, yield quality, and symbiotic fungus 

(SH) accumulation (SAP). 

Explanation of AM fungi  

The GRSP AM fungal symbiosis has been around 

since the earliest land plants appeared, around 400-

450 million years ago [Gautam SP, Prasad 2001; 

Smith and Read, 2010]. This symbiotic relationship 

between AM fungi and terrestrial plants is very 

common, maybe the most common of all mutualisms. 

Soil stability, carbon sequestration, and nutrient 

transfer on a global scale are all dependent on 

symbiotic relationships between plants and fungi 

[Prasad, 2020; Prasad, 2021c; Parniske,2008; 

Gautam and Prasad 2001; Siddiqui et al., 2015]. 

Fungi of the AM genus are obligate symbionts that 

obtain reduced carbon from plant roots in exchange 

for water and nutrients for their host. Up to twenty 

percent of a plant's photosynthate may be dedicated 

to feeding AM fungus. Approximately five billion 

metric tonnes of carbon dioxide are consumed 

annually by AM fungus. Once a fungal reproductive 

spore germinates and sends out hyphae in the 

direction of a host root, the life cycle of mycorrhizal 

fungi has officially begun. As a result of fungal 

signals, hosts undergo physiological changes that 

work against the plant immune program (Prasad, 

2017; Prasad, 2021c; Prasad, 2020; Prasad and 

Kaushik, 2004; Kloppholz et al. 2011). Preparation of 

the ICE occurs actively inside the plant cell [Prasad, 

2017; Prasad, 2021c; Prasad, 2020; Oono and 

Denison, 2010]. At sites of nutrition exchange, where 

the fungus has invaded the host parenchyma cortex, 

it has formed branch-like structures called 

arbuscules. Vesicles condense at the intracellular 

root hyphae (ICH) tips (RS). White-branched hyphae 

and other appendages invade the soil surface, where 

they drink up nutrients and water. In addition to a wide 

range of macro and micronutrients, the most 

prominently transported elements are phosphorus (P) 

and nitrogen (N). In exchange, the fungus gets 

carbon from the host and uses it to build cellular 

structures like mitochondria, chloroplasts, and 

ribosomes, or to produce reproductive structures like 

spores [Prasad, 2017; Prasad, 2021a; Prasad, 2020; 

Prasad and Pandey, 2012; Gautam and Prasad, 

2001]. Hyphae may colonize new plants by 

developing from both spores and the roots of the host 

plant. Fungal fitness among the Glomalin AM fungi 

may be defined, by the presence or absence of 

arbuscules and vesicles. Contrary to the common 

belief that more arbuscules mean more symbiotic 

nutrition exchange, more vesicular colonization may 

be an indication that some fungi are hoarding their 

food supply. 

Penetrating of AM fungi in New Hosts 

Symbiotic AM fungi are able to infect new hosts even 

as they thrive in their current ones. Fungi have the 

ability to produce mycelia/hyphae up to one hundred 

times longer than root hairs, which gives them access 

to a far more extensive nutrition-foraging system than 

roots alone. Increased fungal colonization inside the 

host has the potential to increase carbon uptake and 

phosphorus (P) and other nutrient transfer. Fungi, on 

the other hand, can better search for resources and 

new hosts thanks to an enormous network of external 

hyphal (EH) cells. 

Repopulating of AM Fungi in the Soil 
Environment and Host 

AM fungus reproduces by the formation of thick-

walled globular and sub-globular spores on the 

extraarticular hyphae. These spores have such 

sturdy walls that they may survive in the ground for 

years. This fungus group is made up of plant-root 

symbionts; they may be found in just about every 

ecology, and they reproduce asexually through 

multinucleate spores. Although spores of AM fungi 

are capable of germinating and producing hyphae in 

the laboratory, no one has yet been able to 

successfully cultivate the fungus without a root. AM 

fungal propagules are produced in large quantities 

using transformed root culture (TRC) in a laboratory 

setting using the nutritional medium that has been 

changed. The transformed root becomes infected 

with spores, which then germinate and multiply into 

new spore forms. A major reproductive strategy of 

GRSP-producing AM fungus is spore generation, 

which allows the fungi to spread, recover from 

disruption, and live without a host for up to ten years 

in certain situations [Giovannetti et al., 2010]. 
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Amazingly dynamic, AM fungal glomalin spores send 

out hyphae that scout the soil but stop growing and 

retreat back inside the spore if they do not come 

across a host root [Bonfante and Genre, 2010]. When 

a spore host is removed, the spore germlings will stop 

developing and eventually die off after 8-20 days 

[Prasad, 2017]. 

Uptake of Nutrient and Exchange to Host 

Rhizosphere soil microorganisms are obligatory 

hosts for AM fungus. Their saprobic abilities must be 

limited, and they must depend on the plant for carbon 

feeding [Prasad, 2021c; Prasad, 2020]. The hexoses 

produced by the photosynthesis of their plant hosts 

are ingested by AM fungus. [Prasad,2017; Prasad, 

2021c; Prasad, 2020; Bolan, 1991; Pfeffer et al., 

1999] Arbuscules and intraradical hyphae are two 

possible pathways for carbon transfer from plants to 

fungi. In the intraradical mycelium, AM fungi produce 

secondary metabolites from hexoses (ICM). Mycelia 

convert hexose to trehalose and glycogen. Rapidly 

generated and destroyed carbon storage forms like 

trehalose and glycogen should act as a buffer for the 

ICSC within the cell [Prasad, 2017; Pfeffer et al., 

1999]. The oxidative pentose phosphate route is 

where IRH goes to become pentose for nucleic acids 

(NA). The intraradical mycelium is also the site of lipid 

production (IRM). Extraradical hyphae (ERH) are 

transported lipids to be stored or digested. The ERH 

is where gluconeogenesis, the conversion of lipids 

into hexoses, takes place [Pfeffer et al., 1999; Hamel, 

2004]. About a quarter of the carbon that is 

transferred from the plant to the fungus is stored in 

the ERH [Hamel, 2004; Harley and Smith, 1983]. 

Another benefit of the AM fungus is the transfer of up 

to 20% of the host plant's carbon [Prasad and 

Deploey, 1999; Pfeffer et al., 1999]. This is the host 

plant's contribution to the pool of organic carbon 

below ground, as well as the large amount of carbon 

that the host plant invested in its mycorrhizal network. 

Phosphorus and other nutrients are taken up and 

transferred from the fungus to the plant [Prasad, 

2017; Prasad, 2020; Prasad, 2013; Prasad, 2015; 

Bucking and Shachar, 2005]. In particular, 

phosphorus absorption has been identified as the 

primary advantage of AM fungus to plants. 

Agriculture System Improve through AM Fungi 

Mycorrhizal symbiosis is severely hampered by 

several in-vogue agricultural methods. Mycorrhizal 

symbiosis may be greatly aided by low-input 

agriculture's (LIA) approach to ecosystem 

management. It is more difficult for plants to create a 

symbiosis with AM fungi when conventional 

agricultural practices (CAM) are used, such as tillage, 

heavy chemical fertilizers (HCF) and fungicides, 

inefficient crop rotations (PCR), and selection for 

plants that survive these circumstances. When AM 

fungus has completely colonized a plant's root 

system, that plant will perform better and produce 

more than it would have without AM fungi. The 

symbiotic relationship between AM fungi and their 

host plant improves the host's ability to take in and 

use both macro and micronutrients [Prasad, 2017; 

Prasad, 2021a; Prasad, 2020; Prasad, 2013; Prasad, 

2015; Prasad, 2021e]. All agroecosystems may 

benefit from encouraging AM fungus colonization, but 

it is especially important in organic and low input LIA 

systems in areas with low soil P. AM fungi are 

particularly attractive to plants that are not good at 

foraging for nutrients in the soil, allowing those plants 

to take in much-needed P as well as other macro- and 

micronutrients. 

Enhance Soil Quality (SQ) and Health 

The success of ecological restoration (ER) and, by 

extension, the rate of soil recovery, may be improved 

with the introduction of native AM fungus [Prasad, 

2021c; Gautam & Prasad, 2001; Jeffries et al., 2003; 

Prasad & Rajak, 2001; Worchel et al., 2013]. Since 

AM fungi produce ERH and a soil protein (SP) called 

glomalin, they improve the stability of soil aggregates. 

A monoclonal antibody (Mab32B11) developed 

against ground-up AM fungus spores was used to 

successfully identify GRSP. Extraction conditions and 

antibody Mab32B11 response help characterize it 

precisely. There is growing evidence that AM fungi 

are responsible for producing glomalin. The quality of 

the SH and the land's production may be enhanced 

with the careful control of AM fungus within 

agroecosystems. Reduced tillage, limited 

phosphorus fertilizer use, and perennialized cropping 

systems are all examples of agricultural practices 

(AP) that foster beneficial mycorrhizal symbiosis 

(UMS). 

Impact on Global Climate Change (GCC) 

The populations of AM fungi and the relationships 

between AM fungi and their plant hosts are being 

altered by global warming [Prasad, 2021c]. Whereas 

recent meta-analyses have generally acknowledged 

that interactions between organisms might influence 

their response to GCC. Under simulated nitrogen 

deposition, AM fungi were shown to enhance plant 

biomass (PB) [Worchel et al., 2013; Kivlin et al., 

2013]. However, under DC, AM fungi decreased PB. 

Evidence suggests that AM fungi themselves 

increase their biomass in response to rising 
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atmospheric CO2 [Prasad, 2021c]. To AM, Prasad 

[Prasad, 2021c] spoke on how fungi have the 

potential to alter global climate. 

AM Fungi Impact on Phytoremediation 

Degradation of physical and biological soil 

characteristics (BSP), soil structure (SS), nutrient 

availability (NA), and soil organic matter (SOM) often 

follows the disruption of native plant communities in 

desertification-prone locations (SOM). When 

repairing degraded land, it's important to replace not 

only the above-ground vegetation but also the 

biological and physical soil properties (PSP) [Prasad, 

2013; Jeffries et al., 2003]. In ecological 

phytoremediation, a relatively new method of 

recovering land, AM fungi are inoculated into the soil 

after new plants have been planted. Host plants have 

been able to establish themselves on damaged soil, 

increasing SQ and health as a result [Prasad, 2021c; 

Gautam & Prasad, 2021; Prasad & Rajak, 2000; 

Prasad & Rajak, 2001; Akhtar et.al., 2019]. After 

introducing a mix of native AM fungal species, soil 

quality measures increased significantly over time, 

especially when compared to non-nodulated soil and 

soil inoculated with a single alien species of AM fungi 

[Jeffries et al., 2003]. Higher legume nodulation (LN) 

within the presence of AM fungi led to better plant 

growth, higher phosphorus uptake [Fillion et al.,2001] 

and soil nitrogen content (SNC), higher soil organic 

matter (SOM) content, and improved water infiltration 

and soil aeration [Prasad, 2021c; Prasad, 2017; 

Gautam& Prasad,2001; Jeffries et al., 2003]. In order 

to increase HM (s) extraction from contaminated soils 

and restore the soil's health for crop production, 

native strains of AM fungus are used (Akhtar et.al, 

2019, Akhtar et.al, 2020). For rhizobia, the potential 

benefits of symbiosis are eye-opening. In an 

extremely LRN, a single rhizobia cell may multiply a 

million times or more. Leguminous plants may gain a 

lot from rhizobia and symbiosis. It is common practice 

to inoculate legume crops with rhizobia in many parts 

of the globe, and the necessity of using inoculants 

that are particular to the legume being planted has 

long been recognized. Positive effects on nodulation, 

grain production, and protein content in peas and 

soybeans have been seen after inoculation with 

Rhizobium [Glick, 1985; McKenzie et.al, 2001; 

Prasad, 2021f; Meghavansi et.al 2008; Meghavansi 

et.al 2010; Meghavansi et.al 2005; Harwani et.al 

2006]. Increasing N supply by BNF in rice-based 

cropping systems in warm and humid environments 

was discovered after inoculation with Azospirillum, 

Azotobacter, blue-green algae (BGA), and Azolla (a 

water fern) [Singh et al., 2010]. 

The function of Endophytes in Plant Health 

Many studies have been conducted to better 

understand the evolutionary biology, ecological roles, 

and defense mechanisms against abiotic and biotic 

stress that endophytic organisms play in plants. 

Plants and their crops with commercial, agricultural, 

and industrial significance may benefit from the use 

of endophytic biotechnology. The appropriate use of 

various endophytic species found in plants may aid in 

the enhancement of agricultural products, the 

increase of metabolite production in various plants, 

and the modification of tolerance to a wide range of 

abiotic and biotic environments (Wani et al. 2015). 

Several novel, crucial bioactive compounds have 

been produced by endophytic organisms in recent 

years. It has been hypothesized that, in comparison 

to epiphytes or soil-associated microorganisms, the 

link between diverse endophytic species and their 

host plant in the synthesis of a vast number and 

variety of biologically active chemicals is connected 

together (Strobel 2003). Bioremediation and 

phytoremediation are two promising new 

technological applications for endophytic organisms 

(Li et al. 2012a). Endophytes contribute much to plant 

health via three distinct processes: biofertilization; 

Phyto stimulation; and biocontrol (Bloemberg and 

Lugtenberg 2001). 

Plant Growth-Promoting Activity 

Plants depend primarily on endophytic 

microorganisms to help them adjust to stressful 

situations and new habitats. Plants may create 

symbiotic partnerships with microbes to better survive 

in hostile conditions. These connections are mutually 

beneficial, allowing both partners to evolve and 

become more adapted to their respective habitats 

(Rodriguez et al. 2009). Plants’ capacity to survive 

and function is impacted by factors such as limited 

water and nutrient availability, intense radiation, 

strong winds, and low temperatures (Convey 2011). 

The usage of the symbiotic interaction between plants 

and beneficial microbes is a tried-and-true method for 

alleviating stress without interfering with plant 

development. Plant development is stimulated by a 

wide range of metabolite chemicals, many of which 

are generated by an endophytic fungus (Waqas et al. 

2015). Endophytic microorganisms promote plant 

development by producing enzymes and other 

bioactive compounds. Endophytic microorganisms, 

notably fungi like Sebavermiformifera and 

Piriformospora indica and several species of 

Colletotrichum and Penicillium, are notable for their 

superiority in stimulating plant development under 

adverse environments (Waller et al. 2005; Redman et 

https://www.mediresonline.org/journals/journal-of-microbes-and-research


 
Journal of Microbes and Research 

How to cite this article: Kamal Prasad. (2023). Symbiotic Endophytes of Glomalin AM Fungi, Rhizobium, and PGPR Potential Bio stimulants to Intensive Global Food Production for 

Sustainable Agriculture System. Journal of Microbes and Research. 2(2); DOI: 10.58489/2836-2187/012                           Page 6 of 23 

al. 2011; Hamilton and Bauerle 2012). While plant 

pathogenic viruses, fungi, bacteria, and nematodes 

are responsible for a wide range of plant ailments, the 

plant growth-promoting microorganisms (PGPM) that 

are naturally associated with many plant species offer 

several advantages. Plant hormone syntheses, such 

as indole-3-acetic acid (IAA), cytokinins, gibberellins, 

siderophores, phosphate solubilization, nutrient 

absorption, and antagonism to phytopathogens, 

occur in tandem with the primary functions of PGPM. 

Furthermore, PGPM may trigger induced systemic 

resistance in plants by causing chemical or physical 

changes associated with defense (ISR). Over time, 

PGPM has adapted to provide plants with permanent 

benefits when exposed to a wide range of abiotic 

stresses. Multiple studies have shown the importance 

of plant growth-promoting fungus (PGPF) in 

improving resistance to a variety of abiotic stressors 

(Khan et al. 2012). In contrast, osmotic stress is 

induced by conditions like salt and drought, and it is 

communicated through abscisic acid (ABA) 

independent or dependent pathways (Cao et al., 

2014), and low levels of ABA productions were 

attained under fungal activity (Jahromi et al. 2008; 

Khan et al. 2014). Treatment with endophytic 

Penicillium spp. restores water balance in the plant, 

as described by Miransari (2012), requiring less effort 

from the plant to manufacture ABA and safeguard cell 

progress under stress. In order to maintain 

sustainable agriculture, plant growth-promoting 

bacteria (PGPB) are able to stimulate plant expansion 

through either stand-alone or interconnected 

methods (Compant et al. 2010; Palacios et al. 2014). 

PGPB shown various reactions to several stressors 

in plants (Kim et al., 2012), fought against plant 

infections (Raaijmakers et al., 2009), and 

supplemented the recovery of damaged cells or 

degraded components (Kim et al., 2012; de Bashan 

et al. 2012). It has been reported that endophytic 

bacterial species colonise host plant tissues (Yang et 

al., 2016; Tang et al., 2017); and that these bacteria 

can stimulate plant growth; fix nitrogen; and repress 

phytopathogens with induced systemic resistance 

(ISR) of this pathogen (Pieterse et al., 2014; Puri et 

al., 2016; Padda et al., 2017). One or more of the 

plant growth-promoting processes used by 

endophytic actinobacteria include nitrogen fixation, 

inorganic nutrient solubilization, phytohormone and 

siderophore excretion (Dudeja et al. 2012). The 

hormone indole acetic acid (IAA) is essential for the 

formation and growth of shoot and root cells in plants; 

it is produced by several microorganisms, including 

plant growth-promoting rhizobacteria (PGPR) 

(Hassan 2017). Gibberellins and indole-3-acetic acid 

(IAA) are two examples of plant growth-promoting 

chemicals synthesized by soil microorganisms 

(Radhakrishnan et al. 2013; Limtong et al. 2014). 

Several studies showed in vitro that endophytic 

actinobacteria produce plant growth regulators such 

as auxins, cytokinins, gibberellins (gibberellic acid), 

and IAA (Ghodhbane-Gtari et al. 2010; Fouda et al. 

2019b). Microbes, such as fungi, bacteria, and 

actinobacteria, that are thriving under low iron stress 

produce siderophores, which are tiny molecules with 

high-affinity iron chelators (soluble Fe3
+-binding 

agents). It has been discovered that a wide variety of 

endophytic microorganisms may produce 

siderophores, which have a molecular weight of 

between 400 and 1500 daltons (Kannahi and 

Senbagam 2014). Bacteria produce four distinct 

classes of siderophores: catecholate, salicylate, 

hydroxamate, and carboxylate. Pseudonocardia, 

Streptomyces, Nocardia, Actinopolyspora, 

Micromonospora, Salinispora, Actinomadura, and 

Kibdelosporangium are only a few examples of 

endophytic actinobacteria that are known to generate 

siderophores (Gangwar et al. 2011; Kannahi and 

Senbagam 2014; Bhosale and Kadam 2015). A 

secondary defensive mechanism and plant growth 

regulator, siderophores are synthesized by 

endophytic actinobacteria (Rungin et al. 2012). And 

salicylic acid (SA) is a major phytohormone involved 

in several activities, including root development, seed 

germination, flowering, stomatal closure, and 

enhanced resistance to biotic and abiotic stressors. 

In plants, SA is produced by bacterial endophytes and 

is responsible for promoting plant growth in the face 

of water scarcity and suppressing the development of 

plant diseases such as fungus (Klessig et al., 2016). 

Endophytic Microbes Acts Biocontrol Agents 

Microorganisms found inside plants are called 

endophytes, and they are recognized as biocontrol 

agents that may be used in place of chemical 

pesticides. Insect herbivores are mostly kept under 

control by endophytic fungus, and this is true not just 

for grasses but also for conifers (Parker 1995). 

According to Tefera and Vidal (2009), the sorghum 

borer population was reduced with the application of 

the entomopathogenic endophytic fungus Beauveria 

bassiana. Additionally, throughout storage and shelf 

life, tomato fruits may be preserved against the acute 

rotting caused by fungal diseases. Bacillus subtilis, an 

endophytic bacterium isolated from Speranskia 

tuberculate (Bge.) Baill, has an antagonistic action in 

vitro against Botrytis cinerea, the pathogen 

responsible for the rotting of tomato fruits during 

storage (Wang et al. 2009). In order to combat poplar 
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canker, researchers conducted a biocontrol study 

using novel endophytes such as Burkholderia 

pyrrocinia JK-SH007 and Bacillus cepacia (Ren et al. 

2011). Studies in biocontrol have recently taken a 

novel approach by inducing gene expression in an 

endophytic microbe to produce anti-pest proteins 

such as lectins for insect control. For the production 

of the Pinellia ternate agglutinin (PtA) gene, however, 

endophytic microorganisms were used. These strains 

included Chaetomium globosum YY-11, which was 

recovered from rape seedlings, as well as 

Enterobacter sp. and Bacillus subtilis, both of which 

were isolated from rice seedlings (Zhao et al. 2010). 

Multiple crop seedlings have benefited from the use 

of recombinant fungal and bacterial strains that 

express the PtA gene in order to combat sap-sucking 

pests. Another research demonstrated the efficacy of 

the recombinant endophytic bacterial strain 

Enterobacter cloacae expressing the PtA gene as a 

bio-insecticidal agent against the white-backed plant 

hopper, Sogatella furcifera (Zhang et al. 2011). As a 

novel method for controlling a wide variety of plant 

pests, the development of several anti-pest proteins 

by recombinant endophytic strains is a promising 

area of research. Copper nanoparticles generated 

using the endophyte Streptomyces capillispiralis Ca-

1 have been shown to biocontrol Culex pipiens 

(Mosquito) and Musca domestica, according to 

research published by Hassan et al. in 2018. 

(housefly). Antimicrobial activity against four 

phytopathogenic fungi was found in copper oxide 

nanoparticles generated by two endophytic 

actinomycetes isolated from the Oxalis corniculate L. 

plant: Streptomyces zaomyceticus Oc-5 and 

Streptomyces pseudogriseolus Acv-11 (Hassan et al. 

2019). 

AM Fungi and Nitrogen Fixation 

Endophytes help their host plants in several ways, 

including protecting them from harmful pathogens, 

creating beneficial phytohormones, providing 

nutrients, and fixing nitrogen (Rupple et al. 2013). 

Widespread nitrogen-fixing endophytes in roots (e.g., 

Azoarcus spp., Acetobacter diazotrophicus, and 

Herbaspirillum spp.). Nitrogen fixation improves a 

host plant's health and vitality when nitrogen levels 

are low. Even if only trace levels of fixed nitrogen are 

present in a given species, it is important to clarify 

whether or not they are meant to meet the needs of 

the microbes or the host plant. The poplar endophytic 

bacteria Paenibacillus P22 contributed to the host 

plant's total nitrogen pool and triggered metabolic 

shifts (Hardoim et al. 2015). 

Bradyrhizobium Japonicum (BJ) and Rhizobium  

Nitrogen-fixing (NFB) gram-negative bacteria like 

Bradyrhizobium and Rhizobium (class of the Alpha 

proteobacteria, order of the Rhizobia) may be found 

in soil as free-living organisms or in association with 

the roots of leguminous plants. Cohabitation results 

in the development of root nodules. Since 

bradyrhizobium symbiosis permits only moderate 

application of CF, it has considerable practical value 

in agriculture. Soybean is an N2 fixing partner in the 

soil is the bacteria BJ. When the bacteroid is fully 

developed and nitrogen is fixed, acetate absorption 

rates rise during symbiosis. 

Interaction and Suitability Advantages of 
Rhizobia 

It is expected that a single rhizobial cell that 

establishes a root nodule population (RNP) will 

produce many more offspring than if it had stayed in 

the rhizosphere. Mean values from laboratory and 

field experiments range from 108 to 1011 BJ cells per 

soybean (Glycine max) nodule [Harwani et al. 2006, 

Prasad et al. 2005; Prasad et al. 2019; Prasad, 2011], 

while a Siratro (Macroptilium atropurpureum) nodule 

may contain more than 109 reproductively viable 

rhizobia [Ratcliff and Densi The ability to reproduce 

within a nodule is likely to exert strong selection on 

the kind of symbiosis, but there may be other benefits 

as well. Polyhydroxy butyrate (PHB), a source of 

energy, and phosphate may be stored in nodules by 

rhizobial cells, which may improve their chances of 

survival in the long run. Nodulating bacteria, such as 

Sinorhizobium meliloti, may store enough PHB per 

cell to allow for population growth in the absence of 

an external carbon source [Ratcliff et al., 2008]. To 

that end, a comparable amount of phosphate may be 

stored by BJ in a phosphorus-free culture for up to 

five generations [Harwani et al. 2006; Cassman et al. 

1981] if the BJ is grown at a phosphorus level 

equivalent to that found in nodules. It is important to 

keep in mind that the benefits of nodulation for 

rhizobial suitability rely on the rhizobia’s capacity to 

multiply inside a nodule and are thus only of indirect 

benefit to the host. There is some overlap between 

the goals of legumes and rhizobia; an extra nodule 

worth of rhizobia can fix more nitrogen, allowing for 

potentially more plant development and 

photosynthesis, which in turn might sustain even 

more rhizobia. In hosts where all rhizobia maintain 

reproductive capacity, there are known cases of 

sanctions against less advantageous rhizobia [Kiers 

et al., 2003; Simms et al., 2006]. 

Signaling and Host Range in Rhizobium-Legume 
Symbioses 
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Although Rhizobium legume symbioses (RLS) can fix 

a lot of atmospheric nitrogen, they are very important 

ecologically and agronomically. Nodules are 

specialized structures inside the roots of legumes that 

are formed as a consequence of symbioses; these 

nodules serve to convert nitrogen into ammonia that 

the host plant may utilize. Curling of root hairs, the 

creation of infection threads inside root hairs and, by 

extension, the root cortex, and the induction of a 

meristem within the inner root cortex, giving birth to 

the nodule, are all typical responses to rhizobial 

infection in legumes. Each rhizobium has a distinct 

host range, which may be anywhere from a few 

legume species to well over a hundred, and this 

uniqueness is a key element of RLS. Several 

nodulations (nod) genes that determine host range, 

infection, and nodule formation have been discovered 

by genetic research on nodulation in several 

Rhizobium species. Several of these genes, like 

nodD and nodABC, are ubiquitous in rhizobia as a 

whole, whereas others, known as host-specific nod 

genes, are present in a wide variety of permutations 

across the many rhizobium species. The nod genes 

regulate many signals between the rhizobium and the 

host plant. The presence of flavonoid plant signals 

activates the expression of the opposing (structural) 

nod genes, which are responsible for the production 

and excretion of extracellular signals, known as Nod 

factors, that are uniquely active on host plants. 

Rhizobium Acts as Biofertilizer for Nitrogen 
Fixation (NF) 

The use of Rhizobium species as a biofertilizer (BF) 

to develop an N2 fixing symbiotic connection with 

leguminous agricultural plants has been widely used 

across the globe [Prasad et al. 2005, Prasad et al. 

2019]. One hundred seventy-five million metric 

tonnes per year [Chafi and Bensoltane, 2009] 

nitrogen comes from beyond the continents in the 

world. Around 195 tonnes of nitrogen per year are 

fixed biologically in legumes containing Rhizobium 

species [Vitousek et al., 2013]. BNF of symbiotic role 

in legumes has been studied and recorded for its 

ecological significance. The release of flavonoids 

from the plant is the first step in a complex series of 

events that leads to the formation of a symbiotic 

relationship. Plants constantly manufacture these 

substances, but if the proper rhizobia are recognized 

in the rhizosphere, the concentration of these 

compounds increases [Hassa and Mathesius, 2012]. 

The specificity of the signals sent and received 

between partners may range from almost none to a 

high degree [Hirsch and Fujishige, 2012]. Nodules 

are structures that develop as a result of intracellular 

colonization by rhizobia on the roots of their host 

plants. Despite the first signal exchange and the 

potential for nodule formation, meaningful symbiosis 

is not achieved between certain incompatible 

partners [Miller & Sharitz, 2000]. The bacterial partner 

in the RLS undergoes a process of differentiation into 

a non-dividing endo-cellular symbiont. These 

symbionts induce a nitrogenized complex that the 

host plant then consumes to fix atmospheric N2 into 

NH3/NH4
+. Numerous earlier research on rhizobium 

species has mapped out strain diversity, phylogeny, 

and mechanisms of host specificity. 

Plant Growth Promoting Rhizobacteria (PGPR) 

PGPR has been so named because of the positive 

effect it has on plant development and yield. Direct 

biocontrol of root infections, indirect processes 

including enhanced nutrient availability and 

stimulated rhizobium nodulation (RN), and induced 

systemic resistance all contribute to the potential of 

PGPR benefits (ISR). The plant may be able to resist 

or even out-compete pathogens if its growth is 

stimulated by PGPR. Increased SER is one effect of 

PGPR, which also shortens the period of time a plant 

spends vulnerable to pre-emergence damping-off 

pathogens like Pythium spp. There are two major 

categories of beneficial rhizosphere bacteria: 

symbiotic rhizosphere bacteria (which live in 

symbiosis with the plant) and free-living rhizosphere 

bacteria (which live in the soil and on the roots) 

(Barriuso et al. 2005; Lugtenberg and Kamilova 

2009). Numerous studies have shown that beneficial 

microorganisms may increase plant growth, 

development, and yield, and PGPR has been used to 

increase agricultural output for quite some time. 

Improvements in Nutrient Uptake and Yield from 

Legumes Exposed to Salt Stress via Co-inoculation 

294 (Lugtenberg et al. 2001; Arora et al. 2008; 

Egamberdieva et al. 2010). Germination rates, 

emergence rates, root and shoot growth, total plant 

biomass, seed weight, grains, and yields are all 

improved by treatments with PGPR such as 

Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, 

Enterobacter, Pseudomonas, Burkholderia, Bacillus, 

and Serratia (Mantelin and Touraine 2004; Joseph et 

al. 2007; Yasmin et al. 2007). Rhizobium has been 

shown in subsequent tests to increase chickpea 

growth, nodulation, and yield (Carter et al. 1994; 

Elsheikh and Elzidany 1997; Akhtar and Siddiqui 

2009; Khosravi et al. 2010). Influencing root 

development and morphology is where rhizobacteria 

really shine in terms of their ability to stimulate plant 

growth (Dobbelaere et al. 2001; Creus et al. 2004) 

found that inoculation with bacteria led to the 
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development of long root hairs, promoted the growth 

of lateral roots, and increased root diameter and 

surface area. There is evidence that other PGPR 

species may aid many legumes in their quest for 

optimal development, nodulation, and nitrogen 

fixation (Egamberdieva et al. 2010). 

PGPR Improves Plant Growth under Stressful 
Conditions 

Plants are sessile creatures [Wani et al. 2016] that 

have no choice but to confront wherever they are and 

accept it, thus the systems that govern stress 

tolerance in plants are complex. Increasing plant 

varieties of resistance to stress by traditional breeding 

may take a long time and a lot of money, especially in 

areas where genetic engineering is controversial for 

ethical or societal reasons. There is a growing 

recognition of the use of beneficial bacteria (BM) in 

stress management (SM) and the creation of climate-

change-resistant farming (CCRA). In order to boost 

crop growth and yield, reduce stress, and strengthen 

resistance to diseases and pests, modern research 

has made use of molecular methods (MT). 

Plant Hormones Produced by PGPR to Improve 
Crop Productivity 

Phytohormones serve a crucial role in controlling 

plant growth and PG. Together, they operate as 

molecular signals (MS) in reaction to environmental 

conditions (EF) that would otherwise restrict PG or be 

lethal if allowed to spiral out of control [Fahad et al., 

2015]. Several RB in the rhizosphere is well-known 

for enhancing plant development and resistance to 

stress by secreting hormones for absorption by the 

roots. Numerous PGPR may generate auxins, which 

have profound impacts on both root development and 

plant architecture [Jha and Saraf, 2015; Vacheron et 

al., 2013]. To perform its intended task, exogenous 

IAA must first match the amounts of IAA already 

present in the internal systems of the plant. Bacterial 

IAA may have no impact, a positive effect, or a 

negative effect on PG at optimal concentrations in 

plants [Spaepen and Vanderleyden, 2011]. The 

PGPR that generates auxins has been shown to 

activate auxins response genes that boost PG [Ruzzi 

and Aroca, 2015], increase root biomass and 

decrease stomata size and density [Llorente et al. 

2016], and elicit transcriptional changes in the 

hormone, defense-related, and cell wall-connected 

genes [Spaepen et al. 2014]. Cytokinins and 

gibberellins are produced by a plethora of PGPR 

[Gupta et al. 2015; Kumar et al. 2015]. Plant shoot 

growth (PSG) may be stimulated by higher levels of 

gibberellins in certain PGPR variants than in others 

[Jha and Saraf, 2015]. This is because their 

interactions with auxins may cause changes to the 

root system [Vacheron et al., 2013]. Increased root 

exudate production by the plant is one possible 

outcome of PGPR's role in cytokinin production 

[Ruzzi and Aroca, 2015]. 

Supplementary Microbe-to-Plant Signal 
Molecules (PSM) 

Secondary metabolites (SM) and volatile organic 

compounds (VOCs) generated by bacteria may 

increase stress tolerance (ST) and/or promote 

development in plants. In plants, polyamines provide 

crucial defensive and physiological functions. An 

increase in biomass-modified root architecture (RA), 

and enhanced photosynthetic capability are all the 

results of B. megaterium's induction of polyamine 

synthesis in Arabidopsis by the secretion of 

spermidine, a polyamine (PC). Subsequent water 

deficit stress (WDS) induced by polyethylene glycol 

(PEG) resulted in increased drought tolerance (DT) 

and abscisic acid (ABA) content in the inoculated 

plants [Zhou et al., 2016]. Kumar et al. (2015) found 

that one kind of PGPR may generate HCN, which has 

the potential to regulate the abundance of harmful 

microorganisms in the rhizosphere. The volatile 

organic compound (VOC) generated by PGPR 

activates PG, which in turn leads to increased shoot 

biomass (SB) and better plant stress resistance 

(PSR) [Ruzzi and Aroca, 2015; Billy and Weisskopf, 

2012]. Many plant species have had their PG 

lengthened by microbe-to-plant signal molecules 

(lipo-chitooligosaccharides and thuricin) after plants 

have begun to develop under stressful circumstances 

[Subramanian and Smith, 2015; Subramanian, 2015; 

Zipfel, 2017]. This receptor system seems to have 

developed for disease detection almost two billion 

years ago [Spaink, 2009; Gust et al. 2012; Carotenuto 

et al. 2017]. The receptor for the lipo-

chitooligosaccharides might be a LysM kinase for the 

LRS. 

AM Fungi Tolerance Drought Stress 

As one of the most significant abiotic stressors, 

drought limits the growth, development, and 

production of plants. Drought occurs when plants are 

deprived of water at the roots or when transpiration 

rates are very high (Anjum et al., 2011). Despite 

normal soil water levels, it has been shown that 

diurnal water stress occurs in the middle of the day 

for most plant species in temperate regions. The 

growth rate suffers as a result of this short-term 

drought stress (Granier and Tardieu 1999). Lower 

germination rates, compromised membranes, 

suppressed photosynthesis, and increased 
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production of reactive oxygen species are all effects 

of drought (Greenberg et al. 2008). Furthermore, the 

primary sources of osmotic stress on plants were 

prolonged periods of dryness and high salinity. 

Drought causes osmotic stress, salinity causes ionic 

or ion toxicity, and both types of stress have 

detrimental effects on cells (Zhu 2002). Symptoms of 

osmotic stress from salt in the shoot system, such as 

slow growth and leaf senescence, conflict with those 

of drought stress (Munns 2002). The water use and 

biomass of symbiotic plants (including rice, tomato, 

dune grass, and panic grass) were much lower and 

higher, respectively than those of nonsymbiotic 

plants. Endophyte-associated plants may be more 

drought-resistant than noninfected plants due to 

increased solute accumulation in tissues, thicker 

cuticle development, reduced leaf conductivity, and a 

slower transpiration stream (Malinowski and 

Beleskey 2000). The main reaction to water 

shortages is an increase in ABA biosynthesis and/or 

a decrease in ABA breakdown (Bray 2002). ABA is 

thought to play a key role in drought-stricken plants, 

acting as a signal that regulates the ability of plants to 

cope with water stress. This is achieved primarily via 

the regulation of transpiration and the closure of 

stomata (Zhang and Outlaw 2001). Other data 

suggest that ABA helps plants absorb more water by 

encouraging root branching (De Smet et al. 2006). 

By-products of Azospirillum brasilense sp 245 

cultures with the chemical enhancement of growth 

were analysed using full scan mass spectrometry, 

and ABA was identified as a by-product. NaCl 

supplementation of the culture medium resulted in an 

increase in bacterial ABA production, and ABA levels 

were enhanced in Azospirillum brasilense sp 245-

inoculated Arabidopsis thaliana seedlings (Cohen et 

al. 2008). 

Interaction between AM Fungi and Other 
Beneficial Soil Microorganisms (BSM) 

Soil microorganisms are only one of the many things 

that an AM fungus communicates with [Prasad, 2017; 

Nelsen and Safir, 1982; Ortiz et al., 2015; Abbaspour 

et al., 2012]. Mycorrhizal associations and other 

rhizosphere microbes may benefit from, be 

unaffected by, or suffer damage from interactions 

[Osonubi et al. 1991; Ouledali et al. 2019; De and 

Dodd, 2016; Yosefi et al. 2018]. Nutrient absorption, 

biological control of root infections, improved plant 

tolerance to abiotic stress, and improved soil quality 

are all possible concerns [Laxa et al., 2019]. 

Functions of Microbes in Agriculture 

Benefits from microorganisms extend beyond the 

realm of the bio-economy and may have an impact on 

commercial agriculture. Many economically important 

plants are produced in monoculture, and this kind of 

cultivation necessitates the use of supplements to 

promote healthy development, maximize production, 

and counteract the spread of disease. [Prasad, 2020; 

Prasad et al. 2019; Andreote and Pereira, 2017; 

Vejan et al. 2016; Prasad, 2011; Prasad, 2010; 

Prasad, 2006; Prasad, 2002; Prasad, 1998]. 

Beneficial Microbes Increasing Yield and 
Decreasing Fertilizer Inputs  

Usage of AM fungi, rhizobium, and PGPR singles in 

the consortium has inconsistent effects on crop yield 

[Prasad, 2017; Prasad, 2021a; Prasad, 2021b; 

Prasad, 2021c; Prasad, 2021d; Prasad, 2021e; 

Prasad, 2021f; Prasad, 2011; Prasad, 2010; Prasad, 

1998; Wu CH et al. 2009; Prasad et al. 2005). The 

blending of a bacterium (B. amyloliquefaciens) with a 

fungus (Trichoderma virens) improves yields of corn 

and tomato, among alternative crops [Akladious and 

Abbas, 2012; Molla et al. 2012]. 

Trichoderma with Bradyrhizobium improved the 

growth of soybean whereas combined AM fungi 

and Trichoderma for improved growth and treatment 

of pathogens present within the soil; both of that are 

commercially available. Inoculation with N-fixing 

bacteria (Azospirillum and Azotobacter) allowed half-

rate N fertilizer application and increased sesame 

seed yield and oil quality [Shakeri et al. 2016]. Similar 

effects were shown for Azospirillum 

vinelandii inoculated Brassica carinata cv. Peela 

raya [Nosheen et al. 2016a; Nosheen et al. 2016b]. A 

consortium of bacteria reduced the incidence of root-

knot nematode in tomatoes accumulating fruit yield 

and quality [Niu et al. 2016]. AM fungi and BJ 

improved growth and productivity in soybean and red 

soil-borne pathogens [Prasad et al. 2019; Prasad, 

1998; Prasad, 2011; Prasad, 2011]. 

Beneficial Microbes Improving Disease Control 
and Reducing the Use of Agrochemicals 

The use of biologicals is an alternate strategy for 

controlling plant diseases [Prasad and Rajak, 2001; 

Prasad, 1998; Prasad, 2011; Prasad, 2011; Harman, 

2011]. It's possible that beneficial AM fungi, 

rhizobium, and PGPR release antibiotics and other 

chemicals that are hostile to plant diseases. Another 

prevalent biocontrol method is the production of 

antibiotics [Duponnois et al., 2003]. In most cases, 

pathogens will eventually become immune to 

antibiotics and other forms of biocontrol. When 

dealing with infections, it may be preferable to use a 

holistic strategy that employs numerous dominating 

techniques rather than relying too heavily on just one 

of them. The microbe's ability to fight infections by 
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evolving its mechanism of action over time is another 

factor in its success. Antimicrobial metabolites such 

as lipopeptides, polyketides, and antifungal 

metabolites are also produced by PGPR to combat 

microbial growth (Prasad et al. 2019). 

Benefits of the Tripartite Symbiosis (AM 
fungi/Ectomycorrhizal Fungi (EMF), NFB PGPR 

Improving PG and lowering pathogen levels are two 

further advantages associated with tripartite 

symbiosis [Prasad and Deploey, 1999; Harwani et al. 

2009; Prasad, 1998; Prasad, 2011; Prasad, 2010; 

Prasad, 2022; Chilvers et al. 1987; Lesueur and 

Duponnois, 2005; Rajendran and Devaraj, 2004]. 

Inoculation of C. equisetifolia plants with a mixture of 

AM fungi, Frankia, Azospirillum, and 

Phosphobacteria was proposed by Rajendran and 

Devaraj [Rajendran and Devaraj, 2004]. This 

treatment considerably boosted the height and 

biomass of the plants. Trifecta-inoculated plants 

absorbed more nitrogen, phosphorus, potassium, 

calcium, and magnesium, according to the same 

scientists. Possible enhancement of PG by AM fungi 

in the presence of EMF [Duponnois, 2003; Chilvers et 

al. 1987; Lesueur and Duponnois, 2005; Rajendran 

and Devaraj, 2004]. Frankia and mycorrhizal 

synthesis in vitro using Casuarina equisetifolia 

revealed that combined inoculation with AM fungus 

and EMF greatly boosted biomass and P content 

compared to plants treated with AM fungi or EMF 

alone. Colonization by NF, AM fungi, and EMF was 

boosted when Frankia was introduced to C. 

equisetifolia. Once both symbionts were introduced, 

however, an antagonistic impact was seen, which 

was often caused by exposure to strong EMF 

[Duponnois, 2003]. 

Roadmap to Bioinoculum Production and 
Commercialization 

Conventional agrochemicals may be replaced with 

more environmentally friendly alternatives, such as 

bioformulations of compounds that promote plant 

growth, increase soil fertility, and reduce 

phytopathogens (CAC). Products for the agricultural 

industry are created using live inoculum of a single 

species or many species or supporting isolated signal 

molecules. When it comes to signal compounds, one 

has the option of using microbe-to-plant signals, 

which have direct effects on the plants, or plant-to-

microbe signals, which trigger enhanced production 

of the microbe-to-plant signals in the soil 

environment, presuming that the microbe is present 

in the soil. Both of these options are viable. It is 

possible to employ plant-to-microbe communications 

in conjunction with other methods in order to jointly 

manage the composition of the Phyto microbiome in 

ways that are advantageous to agricultural plants. 

Conclusions 

One or more endophytes may be found in around 3 

million plant species worldwide. Each kind of 

endophyte has a unique function that promotes plant 

development and protects it from environmental 

stresses. As inoculants, endophytes help plants 

adapt to variable environmental circumstances and 

reduce their vulnerability to abiotic stressors. Given 

the growing focus on issues like sustainable 

agriculture, food security, and environmental 

protection, it is more important than ever to find ways 

to use beneficial endophytes. By creating a wide 

range of novel physiologically active metabolites that 

may be able to positively control plant physiologic 

problems, endophytes may also be a useful tool for 

increasing crop yields and improving product quality. 

They are useful for protecting plants from pathogens 

and getting rid of harmful chemicals left behind by 

pesticides, herbicides, and heavy metals. 

Furthermore, it rapidly boosts the host immune 

system. 

Adaptation to biotic and abiotic stressors, as well as 

the amelioration of their impacts, are all areas in 

which AM fungi play a vital role in enhancing PG and 

production. Reduced exposure to harmful pesticides 

and industrial chemical fertilizers may be achieved 

thanks to their ability to increase PG and yield as well 

as resilience to disease and tolerance to biotic and 

abiotic stressors. In order to promote their industrial 

production on a massive scale and maximize their 

influence, it is crucial to employ biostimulants in 

genuine ecosystems and in sync with 

biogeographically zoned regions to provide sufficient 

nutritious food for every human being on the globe, 

both now and in the future. Researchers, businesses, 

and governments all have a role to play in boosting 

AM fungus production so that they may be more 

widely used, especially in underdeveloped nations 

where AM fungi inoculum are neither widely available 

nor affordably priced. However, only legumes are 

able to participate in the biological process of juvenile 

nitrogen-fixing root nodule symbiosis with bacteria, 

while the roots of higher plants may create an 

endosymbiotic relationship with soil fungus to 

generate AM fungi. Multiple receptors and signaling 

pathways regulate the widespread occurrence of AM 

fungus, rhizobia, the plant growth regulator (PGPR), 

and other components of a successful symbiosis. 

Understanding the variety of AM fungi, rhizobium, and 

PGPR as well as their colonization potential, methods 

https://www.mediresonline.org/journals/journal-of-microbes-and-research
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of action, formulation, and application, thanks to 

current advancements in rhizospheric modification, 

should help them become trustworthy components in 

the management of eco-friendly and SAS. The safe 

approach of nutrient solubilization and plant growth-

promoting activities provided by AM fungus and 

PGPR-mediated agriculture is rapidly gaining 

popularity throughout the globe for a broad variety of 

crops and controlled ecosystems (PGPA). This new 

era of genetic modification research and technology 

should begin quickly thanks to the novel tools of 

genetic modification in AM fungi and PGPR, such as 

the importation and unleashing of nutrients from fixed 

and uptake forms to plant available forms and natural 

enemies and improved germplasm, breeding, and 

field testing. Attempts to maximize nutrition 

solubilization and PGPA via the use of individualized 

application tactics are often hampered by gaps in our 

understanding (AS). There needs to be a more in-

depth study on the impact of soil plant environmental 

system on rhizosphere microbial population 

dynamics and on the composition of the rhizosphere 

as it is modified (MPD). Although AM fungi and PGPR 

showed promise as commercial inoculants for SAS, 

they were yet to live up to their full potential. Plants 

that have evolved to a variety of challenges, including 

drought, salt, temperature, nutritional stress, and 

heavy metals, might benefit from the usage of 

endophytes as a secondary defense mechanism. 

Endophytes are beneficial microorganisms that live in 

symbiotic relationships with their host plants. More 

research is needed to fully understand these 

relationships and optimize endophytes' potential as 

growth promoters and plant protectors. 
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