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Introduction 

A series of long-term metabolic diseases known as 

diabetes mellitus (DM) are defined by hyperglycemia 

brought on by insufficient or resistant insulin 

production. Type 1 diabetes mellitus (T1DM), type 2 

diabetes mellitus (T2DM), gestational diabetes, and 

monogenic diabetes are the four primary subtypes of 

DM. Due to the complete insufficiency of endogenous 

insulin brought on by the autoimmune death of 

pancreatic cells, patients with T1DM require daily 

insulin injections. Thus, insulin-dependent DM is 

another name for type 1 diabetes. Patients with type 

2 diabetes who are not responding well to oral 

medicines may require exogenous insulin injections. 

Without proper care, diabetes can lead to several 

complications. Hypoglycemia, diabetic ketoacidosis, 

or hyperosmolar nonketotic coma are examples of 

acute consequences (HHNC). Cardiovascular 

disease, diabetic nephropathy, and diabetic 

retinopathy are examples of long-term consequences 

[1]. Drugs and exogenous insulin delivery can treat 

hyperglycemia, but they are unable to physiologically 

control blood sugar levels. In order to effectively cure 

diabetes, patients' insulin production and glucose-

dependent insulin secretion control should both be 

restored (Fig. 1). For T1DM patients with inadequate 

glycemic control, clinical pancreas or islet 

transplantation has been suggested as a viable 

therapeutic alternative. However, a significant 

obstacle to clinical islet transplantation continues to 

be the global paucity of pancreas donors. Since 

human pluripotent stem cells (hPSCs) were expected 

to be used in regenerative medicine, extensive 

research was done on the in vitro creation of IPCs or 

islet organoids. Human embryonic stem cells 

(hESCs) and human induced pluripotent stem cells 

(hiPSCs), adult stem cells, and differentiated cells 

from mature tissues that can be transdifferentiated 

into IPCs are the main sources for the production of 

IPCs or islet organoids in vitro. 

General Overview 

Type 1 diabetes (T1D) is characterised primarily by 

the pathological loss of insulin-producing cells [2, 3]. 

Multiple daily exogenous insulin injections or 

continuous insulin infusion through a pump can lower 

blood glucose levels. Exogenous insulin cannot 

control hepatic glucose levels because it does not 

pass into the liver, which causes unstable glycemic  
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Fig 1: Clinical Trials for Cell Therapies Using PSCs Shownare clinical trials that use hiPSC or hESC and are found in UMIN Clinical Trials 
Registry (https://www.umin.ac.jp/ctr/index.htm) or ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home) as of September, 2020 

control in T1D patients [4]. In T1D patients, poor 

glycemic management results in long-term problems. 

To compensate for cell function and regulate blood 

glucose levels, sensor-augmented insulin pump 

therapy and pancreas or islet transplantation therapy 

may be effective options [5]. Although a pancreas 

transplant offers a high rate of blood glucose 

homeostasis and insulin withdrawal, it necessitates a 

technically challenging procedure and may result in a 

number of postoperative problems, including portal 

vein thrombosis [6]. The quality of life is also improved 

by pancreas transplantation, although there are few 

available donors and immunosuppressive medication 

is necessary [7]. According to reports, T1D patients 

who received islet transplants from brain-dead donors 

together with steroid-free immunosuppressive 

therapy were able to stop taking insulin [8]. Islet 

transplantation appears to reduce hypoglycemia 

episodes and improve glycemic control in T1D 

patients when compared to insulin injection therapy 

[9]. Compared to pancreatic transplantation, islet 

transplantation carries a decreased risk of surgical 

complications, although multiple transplantations are 

sometimes necessary to permit discontinuation of 

insulin therapy [10]. Thus, the lack of available 

donors, immunosuppressive medication, and graft 

rejection are issues with both pancreatic and islet 

transplantation. A therapeutic approach for creating 

pancreatic islet-like cells from human pluripotent stem 

cells (hPSCs), including induced pluripotent stem 

cells (iPSCs) or embryonic stem cells (ESCs), and 

using them for transplantation can be taken into 

consideration as a way to deal with the donor 

shortage. Over the past 15 years, basic techniques 

for causing human stem cells to differentiate into 

pancreatic endocrine cells, which are produced 

during embryogenesis from the conversion of 

definitive endoderm to pancreatic endoderm, have 

been established. This has allowed a yield of 20–40% 

insulin-positive pancreatic islet-like cells [11–16]. Co-

culture models, such as the co-culture of islet cells 

and endothelial cells, should be taken into 

consideration since islet cells have a three-

dimensional (3D) shape and interact with surrounding 

cells in vivo [17–19]. Pseudo-islets, which are made 

up of PP, PP, PP, and PP cells, are artificial 

pancreatic islets that have been created in vitro using 

a variety of techniques [20, 21]. To make it easier to 

identify cells that make insulin, Micallef et al. created 

a human embryonic stem cell reporter that encodes 

green fluorescent protein (GFP) at the INS locus [22]. 

Islet organoids created from human pluripotent stem 

cells (hPSCs) are depicted in Figure 1. In diabetic 

animals, the transplantation of pseudo-islets 

produced from stem cells may enhance insulin 

secretion [23]. It is still not entirely known, 

nevertheless, how the immune response and 

modifications to cell function develop after the 

transplantation of islet cells produced from stem cells. 

Additionally, the affordability of stem cell therapy for 

beta cells or pseudo-islets in comparison to traditional 

diabetic treatment must be taken into account. 

 

Figure 2: Pancreatic islets made from human pluripotent stem cells 
(hPSCs). Live-cell imaging of pancreatic islet organoids produced 
from hPSCs (left) and immunofluorescence (right). The insulin 
promoter controls the expression of GFP. Antibodies to DAPI, 
glucagon, and insulin are used to stain cells (blue). 20 m is 

represented by the scale bars in both panels. 

Autoimmune Responses in Stem Cell Therapy for 

T1D 

Autologous transplantation of pancreatic islet-like 

cells derived from human pluripotent stem cells 

(hPSCs) has the potential to control blood sugar 

https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
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levels without the risk of immunological rejection. Due 

to the fact that the iPSCs were generated by the 

patients themselves, it is believed that autologous 

transplantation of iPSCs does not result in graft 

rejection. In actuality, autologous transplantation of 

skin, bone marrow, endothelium, or neuronal cells 

produced from mouse iPSCs or monkey iPSCs did 

not elicit immunological responses [24–26]. The 

autologous transplantation of mouse iPSC-derived 

teratoma into the subcutaneous region revealed graft 

rejection, according to Zhao et al. [27]. According to 

this study, iPSC differentiation could lead to aberrant 

gene expression that could lead to a T-cell-dependent 

immunological response upon autologous 

transplantation. T1D recipients may experience an 

autoimmune reaction from autoreactive T cells to 

transplanted islet cells. This chapter will go over 

possible autoimmune reactions that can happen 

when islet-like cells produced from stem cells are 

transplanted (SC-islets). In diabetic mice, the 

transplantation of pancreatic islets made from hPSCs 

reduced hyperglycemia [28]. As a result, autologous 

transplantation of iPSCs is thought to be beneficial, 

but it takes a lot of time and money to cultivate the 

cells and encourage their maturation into cells that 

produce insulin. Banks of iPSCs from different HLA 

are being created for allogeneic transplantation [29]. 

For T1D patients to avoid autoimmune reactions 

against transplanted SC-islets, an encapsulating 

device is particularly helpful [30]. These 

encapsulating devices might be better transplanted 

subcutaneously since hPSCs have a risk of 

carcinogenesis, such as teratoma. According to 

studies, epigenetic regulatory alterations brought on 

by inadequate reprogramming of somatic cells 

promote cancer [31, 32]. It has been shown that 

lysine-specific demethylase 1 (LSD1), a histone 

demethylase, can be pharmacologically inhibited to 

stop the development of teratomas from iPSCs 

transplanted into immunocompromised mice [33]. 

Immune reactions are triggered by the human 

leukocyte antigen (HLA), which differentiates foreign 

antigens [34, 35]. Antigen-presenting cells, such as 

dendritic cells that express HLA class II, present the 

antigen to helper T cells, which then trigger the onset 

of immune responses that are specific to the antigen. 

The haplotype created by the DR and DQ genes is 

involved in the illness susceptibility of T1D, and the 

class II gene has the highest association with the 

condition [36, 37]. Because mesenchymal stem cells 

(MSCs) do not express HLA class II antigens, 

transplantation therapy employing MSCs has also 

been demonstrated to be beneficial [38]. Despite the 

infiltration of immune cells into the peritoneal cavity 

and left kidney capsule following local transplantation, 

MSC-derived insulin-producing islet-like cells 

improved glycemic control in diabetic STZ-treated 

mice [39]. Clinical research revealed that MSC 

transplantation enhanced T1D patients' glycemic 

control [40]. However, to date, no clinical trials have 

looked at the use of SC-islet cells derived from iPSCs, 

ESCs, or MSCs. For SC-islet cell transplants, graft 

rejection avoidance is a crucial concern. In an 

autologous transplantation trial, mouse-PSC-derived 

islet cells were injected into the kidney capsule of 

mice with STZ-induced diabetes, according to 

Yamaguchi et al. [41]. In that file, SC islets have been 

generated by injecting mouse % into Pdx-1-deficient 

rat blastocysts, and the SC islets contained 

endothelial cells from rat foundations. As a result, 

immunosuppressive therapy became necessary 

during the first five days following transplantation. 

Even after the withdrawal of immunosuppressive 

drugs, SC islets continuously progressed blood 

glucose tiers inside the normal range in diabetic mice 

for 370 days. But whether the autologous 

transplantation of iPSC-derived islets from patients 

with T1D can cause graft rejection remains uncertain. 

Leite et al. performed an in vitro experiment in which 

SC-islet cells from T1D subjects or non-diabetes 

subjects were co-cultured with autologous immune 

cells, and they suggested that endoplasmic reticulum 

pressure triggered an immune reaction in SC-islet 

cells from each T1D donor and non-diabetes subject, 

indicating that immune responses can also occur with 

autologous transplants [42]. This study further 

demonstrated that T cell activation is limited to the 

autologous transplant of SC-islet cells that have been 

enriched in -cells and does not happen in SC-islet 

cells that are not enriched in -cells; however, the 

mechanism of -cell-specific T cell activation is not fully 

known. Clarifying the differences between SC-islet 

cells from T1D donors and those from people without 

diabetes is crucial when thinking about stem cell 

therapy for T1D patients. As far as increases in 

interleukin-1 (IL-1), tumour necrosis factor (TNF), or 

interferon (INF) levels in response to cytokine-

induced stress go, Millman et al. found no differences 

between T1D and non-diabetes SCislet cells [43]. 

According to reports, SC-islet cells from T1D and T2D 

patients secreted insulin at levels comparable to 

those of non-diabetic individuals [44]. When 

inflammatory cytokines (TNF-, IL-1, and IFN-) were 

administered to SC-islet cells from patients with 

fulminant T1D and healthy subjects, Hosokawa et al. 

found that the fulminant T1D patients' SC-islet cells 

were more likely to undergo apoptosis [45]. The 

differential expression of immune response-related 

https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
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genes in SC-islet cells from fulminant T1D donors and 

control people suggests that aberrant 

immunoregulation in fulminant T1D cells may speed 

up cell death and disease progression. Therefore, it 

is currently difficult to draw any conclusions about the 

characteristics of SC islet cells from T1D sufferers. 

The risk of graft rejection should be taken into account 

even when SC-islet cells from T1D patients are 

autologously transplanted. Approaches for gene 

modification may be helpful for shielding SC-islet cells 

from immunological reactions. In 

immunocompromised mice, engraftment and 

hematopoiesis were enhanced by HLA-A deletion in 

hematopoietic stem cells [46]. Targets for T1D 

treatment include immunomodulatory proteins, 

including CTLA4 and PD-L1, which are cytotoxic T 

lymphocyte-associated proteins. Immune checkpoint 

drugs, which block these proteins, cause T cells to 

become activated and have an anticancer effect. T1D 

development, however, has apparently been linked to 

the use of immune checkpoint inhibitors as a side 

effect [47]. The adeno-associated virus's 

overexpression of PD-L1 and CTLA4Ig in mouse 

pancreatic -cells retained the -cell mass and shielded 

NOD animals against the onset of T1D [48]. 

Treatment for autoimmune disease may benefit from 

a strategy that focuses on immune cells. According to 

a recent study, regulatory T cells (Tregs) in 

experimental autoimmune encephalitis (EAE) mice—

a model of autoimmunity disease that displays 

aberrant Treg function—had higher levels of 

mitochondrial reactive oxygen species (mtROS) [49]. 

Scavenging mtROS in Tregs reduced the 

autoimmune responses in EAE mice [49]. According 

to Joshi et al.'s research, T1D-derived iPSC-derived 

macrophages preferentially delivered a pro-insulin 

peptide to islet-infiltrating T cells separated from the 

same donor, which resulted in T cell activation [50]. 

Anti-HLA-DQ antibodies selectively prevented this T 

cell activation. According to these results, research 

concentrating on T1D patients' immune cells as well 

as their pancreatic cells will be crucial for advancing 

iPSC-based diabetic therapy techniques. 

Challenges of Pluripotent Stem Cell-Based Cell 
Therapy 

Human pluripotent stem cells, such as induced 

pluripotent stem cells (iPSCs) and embryonic stem 

cells (ESCs), provide previously unheard-of 

possibilities for cell therapy against incurable 

illnesses and wounds. Clinical experiments are 

already using both ESCs and iPSCs. However, their 

fundamental characteristics of tumorigenicity, 

immunogenicity, and heterogeneity continue to pose 

practical challenges that restrict their usage. Here, I 

summarize 20 years of research that has focused on 

resolving these three issues. The promise of PSCs is 

currently expected to be realized at a level that has 

never been higher. For many more patients to have 

access to PSC technology, there are a number of 

obstacles that must be overcome. I want to 

concentrate on the three main issues in this 

perspective: tumorigenicity, immunogenicity, and 

heterogeneity. By addressing these issues and 

suggesting potential solutions, I intend to hasten the 

development of cell treatments employing hPSCs. 

Tumorigenicity 

The ability of PSCs to reproduce indefinitely has 

allowed us to prepare billions of different kinds of 

human cells for transplantation, which is a significant 

benefit. This trait, meanwhile, has a downside since if 

cells continue to divide even after transplanting, they 

could form tumors. There are three possible 

tumorigenic situations. First, teratomas or tumours 

may form as a result of improper patterning if 

undifferentiated and/or immature cells are left in the 

final cell products that have been differentiated from 

human PSCs. Second, if reprogramming factors are 

still present in the iPS cells, they might encourage the 

growth of tumours. Third, genetic changes that 

occurred during PSC in vitro culture could be the 

source of tumorigenicity. 

Teratoma and Other Tumors Due to Incorrect 
Patterning 

The most critical issue with hiPSC and hESC cell 

transplantation is the development of teratomas. 

Teratoma development could be caused by even a 

small number of residual PSCs. Additionally, lineage-

specific ll Cell Stem Cell 27, October 1, 2020 Elsevier, 

Inc., 523 stem cells may cause cancer as a result of 

improper or insufficient patterning if they are present 

in the transplant. For instance, patterning toward the 

cortex in the nervous system results in a highly 

proliferative cell that can create "neural rosettes," 

which, if injected in vivo, proliferate in a tumor-like 

manner [51]. As a result, scientists working on hPSC-

based cell therapies have been putting a lot of time 

and effort into developing strategies that could stop 

teratomas and other tumours from developing as a 

result of improper patterning. 

Tumorigenicity Caused by Reprogramming 
Factors 

This risk only applies to iPSCs. All four 

reprogramming factors have been linked to 

tumorigenicity, particularly c-Myc, one of the most 

frequently mutated genes in human malignancies and 

frequently acting as a driving mutation. In fact, we 

https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
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have demonstrated that the four reprogramming 

factors were transfected into iPSCs to produce tumor-

prone chimeric mice [52]. In these tumours, we found 

that the c-Myc retrovirus had reactivated. Such 

tumours were not seen in chimeric mice created from 

iPSCs that were not activated by the cMyc retrovirus. 

Additional factors, such as a dominant-negative 

mutant of p53, are occasionally used in addition to the 

original four reprogramming factors to improve 

reprogramming efficiency [53]. EBNA1 is employed to 

sustain episomal expression of the reprogramming 

components in iPSCs produced using plasmids [54]. 

Given EBNA1's well-established roles in cancer, this 

is cause for concern. The incorporation of these 

cancer-causing transgenes in hiPSC intended for use 

in clinical cell treatments should therefore be carefully 

avoided. 

Tumorigenicity Caused by Genetic Abnormalities 

HiPSCs, hESCs, and any other cells that are grown 

in vitro before being transplanted all have this risk. 

Genetic modifications, such as chromosomal 

abnormalities, copy number variation, and single 

nucleotide mutations, are inexorably brought on by 

cell culture for in vitro expansion. Cells with 

abnormalities such as chromosomal deletion, 

duplication, or rearrangement are typically removed 

for use in cell treatments and other downstream 

applications. Chromosomal abnormalities were 

traditionally evaluated by karyotyping. Chromosome 

duplications 1, 12, 17, and 20 have frequently been 

observed in hESCs and hiPSCs following prolonged 

growth [55]. Such chromosomal defects in PSC lines 

prevent them from being used in cell therapy 

applications. Subcloning may be used in some 

circumstances to choose cells free of anomalies. 

Heterogeneity 

PSCs have both pluripotency and limitless 

proliferative capacity. Each PSC line is different from 

the others, though. The morphology, growth curve, 

gene expression, and tendency for differentiating into 

multiple cell lineages are all unique to each line. This 

"heterogeneity" presents a challenge for subsequent 

uses, such as cell treatments. 

Immune regulation in human T1DM stem cell 
therapy 

For the therapy of T1DM, ESC/iPS-derived cells have 

been suggested as a viable source of replacement 

cells. However, the widespread use of cell 

replacement therapy for T1DM continues to face 

significant challenges from both the alloimmune and 

autoimmune reactions. Despite significant 

advancements in encapsulation technology, there are 

still difficulties in getting transplanted hPSC-derived 

pancreatic progenitors, or cells, to graft. If the 

encapsulating system is removed, the immune 

system of the receiver will undoubtedly kill the 

engraftments. It seems hopeful to modify these 

encapsulated cells in certain ways to thwart 

autoimmune attacks. HLA mismatching is the primary 

molecular mechanism of immune rejection in allo- or 

xenografts [56]. Studies have shown that removing 

HLA-A genes from hematopoietic stem cells by 

means of zinc-finger nucleases may improve donor 

compatibility [57, 58]. Similar to this, deleting HLA-A 

and HLA-B biallelically or knocking out the 2-

microglobulin (B2M) gene, which eliminates all HLA 

class I molecules, left one allele of HLA-C in place, 

allowing the hPSC grafts to resist T and NK cell attack 

[59]. Other Stem Cell Research & Therapy (2020) 

11:275 Page 9 of 13 Chen et al., Stem Cell Research 

& Therapy (2020) 11:275 Page 9 of 13 Protocols for 

immunosuppressive effects have been reported, 

including the targeted overexpression of PDL1-

CTLA4Ig in cells, which successfully prevented the 

onset of T1DM and allo-islet rejection, subsequently 

enhancing the survival of the cell mass [60]. 

Therefore, using hPSCs to modulate the immune 

system may be a viable way to address the problems 

caused by engraft rejection. 

Pancreatic Stem Cell Therapy and Automated 
Insulin Delivery System Comparison 

T1D is defined by lifelong insulin injections due to 

chronic hyperglycemia brought on by insulin 

insufficiency resulting from the loss of pancreatic -

cells, primarily by autoimmune processes [61]. 

Currently, insulin pumps aid in better controlling blood 

glucose levels. A blood glucose level of 70-180 mg/dL 

for at least 70% of the day has been proposed as a 

goal range for glycemic control (time in range, or TIR) 

in people with T1D or T2D in general [62]. Better 

blood glucose level maintenance has been achieved 

with the use of continuous glucose monitoring (CGM) 

or flush glucose monitoring (FGM) and insulin pumps 

with a Predictive Low Glucose Suspend (PLGS) 

feature [63, 64]. Since the amount of insulin may be 

changed based on the CGM value, Sensor 

Augmented Pump (SAP) therapy, which combines 

CGM and an insulin pump, is regarded as an artificial 

pancreas [65]. In order to achieve the objective of 

diabetes therapy without the need for insulin 

injections, cell replacement therapy is also 

anticipated to be a promising treatment for T1D. 

Pancreas, islet, or SC-islet cell transplantation is 

included in cell replacement. In this chapter, we'll 

contrast the use of an artificial pancreas and the 

https://www.mediresonline.org/journals/journal-of-clinical-and-medical-reviews
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transplantation of SC-islet cells (Table 1). 

Table 1: Comparison of automated insulin administration systems and the implantation of SC-islet cell 

 
SC-Islet Cells Transplantation Automated Insulin Delivery Systems 

Advantages 
Free from insulin injection 
Improved time-in- range 

No immunosuppression 
Improved time-in-range 

Disadvantages 

Risk of immunosuppression 
Risk of cancerization 

Risk of insulin insufficiency 
Risk of re- transplantation 

Complicated maintenance 
Adjustment of dose according to diet 

Risk of hypoglycemia, 
DKA or HHS Local skin troubles 

 

At the conclusion of our evaluation of the literature, 

we want to underline the importance of continuing our 

current initiative to offer up-to-date reviews on 

illnesses and drug chemistry that benefit people all 

around the world [66–101]. 

Conclusions and perspectives 

A promising possible therapeutic approach for 

treating diabetes, particularly T1DM, is stem cell-

based therapy. As indicated in this review, significant 

developments in the study of the hPSC-derived IPCs 

have increased the likelihood that T1DM patients may 

once again have insulin secretion that is responsive 

to glucose. But the clinical trial outcomes of stem cell 

treatments for T1DM are still unsatisfactory, and there 

are still a lot of unanswered questions and technical 

challenges to be overcome. The four main issues are 

as follows: (1) how to develop more developed, 

functional hPSCs in vitro; (2) how to increase the 

effectiveness of IPC differentiation from hPSCs; (3) 

how to safeguard implanted IPCs from autoimmune 

attack; (4) how to produce enough of the desired cell 

types for clinical transplantation; and (5) how to 

completely establish insulin independence. Despite 

these challenges, the most cutting-edge method for 

treating type 1 diabetes is the use of stem cell-based 

therapy. 
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