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Introduction  

Woodcock and LaVange (2017) originally proposed 

the concept of master protocol for testing multiple 

therapies in one indication, one therapy for multiple 

indications or both to expedite drug/clinical 

development of drug products under investigation. A 

master protocol design is defined as a protocol 

designed with multiple substudies, which may have 

different objectives and involves coordinated efforts 

to evaluate one or more investigational drugs in one 

or more disease subtypes within the overall trial 

structure. Woodcock and LaVange (2017) indicated 

that a master protocol may be used to conduct the 

trial(s) for exploratory purposes or to support a 

marketing application and can be structured to 

evaluate different drugs compared to their respective 

controls or to a single common control. In practice, it 

is suggested that the sponsor can design the master 

protocol with a fixed or adaptive design with the intent 

to modify the protocol to incorporate or terminate 

individual substudies within the master protocol. 

Individual drug substudies under the master protocol 

can incorporate an initial dose-finding phase. As an 

example, adult data, when sufficient, can inform a 

starting dose for the investigational drug in pediatric 

patients as long as the drug provides the prospect of 

direct clinical benefit to pediatric patients. 

Under the broad definition for master protocol, a 

master protocol consists of three distinct entities: 

basket, umbrella, and platform trials, which are 

defined in Section 2. A master protocol may involve 

direct comparisons of competing therapies or be 

structured to evaluate, in parallel, different therapies 

relative to their respective controls. Some take 

advantage of existing infrastructure to capitalize on 

similarities among trials, whereas others involve 

setting up a new trial network specific to the master 

protocol. All require extensive pretrial discussion 
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among sponsors contributing therapies for evaluation 

and parties involved in the conduct and governance 

of the trials to ensure that issues surrounding data 

use, publication rights, and the timing of regulatory 

submissions are addressed and resolved before the 

start of the trial. 

In practice, each of the three distinct trial designs that 

utilize master protocol have their own statistical 

considerations that arise from the trial’s objective, and 

these considerations also vary within each distinct 

entity as the trial designs can vary widely even within 

each entity. Basket trials commonly face issues with 

heterogeneity between different subgroups, which 

can lead to an inflated false positive rate when 

exchanging information across subgroups. Umbrella 

trials, on the other hand, commonly face multiplicity 

issues as multiple treatment effects are tested in the 

same study, leading to a greater likelihood of a false 

positive. Lastly, platform trials face multiplicity 

concerns similar to umbrella trials, but they also face 

statistical considerations that arise from population 

drift. Due to the complexity of master protocol trial 

designs, these statistical considerations need to be 

considered for an accurate and reliable assessment 

of the treatment effect under study. 

The purpose of this article is not only to provide a 

review of master protocol trial design but also to 

outline current issues and potential challenges from 

multiple perspectives. In the next section, types of 

master protocols are briefly introduced. Regulatory 

perspectives to inform master protocol trial design are 

discussed in Section 3. Section 4 provides current 

issues and challenges regarding statistical validity 

and efficiency from statistical perspectives.  Case 

studies of master protocol trial design in oncology 

drug development and other therapeutic areas are 

discussed in Section 5. Concluding remarks are given 

in the last section of this article.  

Master Protocol Trial Design 

Classical clinical trials investigate one therapy in the 

context of one population group while master protocol 

clinical trials investigate either multiple therapies or 

multiple populations at the same time in one study. In 

what follows, commonly considered master protocol 

trial designs are briefly described. 

Basket Trial Design 

As indicated by Woodcock and LaVange (2017), 

basket trials aim to study a single targeted therapy in 

the context of multiple diseases or disease subtypes. 

As a result, basket trials feature a single targeted 

agent in multiple patient populations across different 

indications. 

Basket trials are commonly used in oncology studies. 

They have become more popular as the oncology 

drug development landscape increasingly aims to 

create therapies that are designed to improve 

outcomes for patients with cancers that harbor 

specific molecular aberrations rather than by specific 

tumour types. In this manner, basket trials have 

emerged as an approach to test the hypothesis that 

targeted therapies may be effective independent of 

tumour histology, as long as the molecular target is 

present. Basket trials offer the advantage of lowering 

the required sample size by increasing the power of 

the analyses through borrowing information across 

the different subgroups. However, a key scientific 

assumption for this kind of pooled analysis is that the 

subgroups are homogeneous and therefore 

exchangeable. 

Umbrella Trial Design 

In contrast to basket trials, Woodcock and Lavange 

(2017) defined umbrella trials as the study of multiple 

targeted therapies in the context of a single disease, 

dividing patients into multiple parallel treatment arms 

and often sharing one control. An umbrella trial with 

common control has the potential of reducing the total 

number of patients allocated to the control, making it 

more appealing to patients and drug developers. 

However, because umbrella trials involve multiple 

investigational drugs, they require collaboration 

among multiple stakeholders, which has proven to be 

a significant challenge. 

Ouma and others (2022) found that most umbrella 

trials to date have been conducted in early phase 

settings and similar to basket trials, nearly exclusively 

in oncology. While new designs for the umbrella trial 

design have been studied very little, Simon (2017) 

demonstrated the potential for umbrella trials to be 

designed as integrated phase II/III trials through the 

implementation of enrichment designs.  

Platform Trial Design 

Platform trials, as characterized by Woodcock and 

LaVange (2017), also study multiple targeted 

therapies in the context of a single disease but are 

designed to continue in a perpetual manner, with 

therapies allowed to enter or leave the platform on the 

basis of a predetermined decision algorithm. Because 

platform trials are an ongoing process rather than 

following a predefined schedule, the study design can 

take advantage of adaptive strategies like response-

adaptive randomization, using information generated 

early on in the study to determine and adjust how the 

study continues. 

While some platform trials have been deemed to be 
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successful like BATTLE and I-SPY2 trials, featuring 

adaptive randomization and the use of Bayesian 

hierarchical models to evaluate treatment effects, 

statistical methodology research on the platform trial 

design remains sparse. While some new Bayesian 

modeling and adaptive randomization procedures 

have been proposed (Hobbs et al. 2016, Kaizer et al. 

2018), there continues to be widespread debate and 

disagreement on not only problems specific to 

platform trials but also on response-adaptive 

randomization. In addition, platform trials face issues 

with controlling the Type I error rate as a result of 

multiplicity concerns.  

While platform trials still primarily exist in the oncology 

setting, they have become used increasingly in the 

non-oncology setting as well. These include the 

REMAP-CAP trial, which studied community-

acquired pneumonia, and DIAN-TU NexGen, which 

studied treatments for Alzheimer. Therefore, we can 

see that platform trials have potential to be used 

across numerous therapeutic areas including 

bacterial and viral diseases as well as mental and 

neurological diseases. 

A Comparison 

In practice, well-designed and conducted master 

protocols can accelerate drug development by 

maximizing the amount of information obtained from 

the research effort. Utilizing a master protocol 

eliminates the need to develop new protocols for 

every trial, and instead new agents can be introduced 

through amendments to an already-approved 

protocol, avoiding the need for repeated review of all 

study procedures. Furthermore, compared with 

conducting separate stand-alone trials, conducting an 

umbrella or platform trial can increase data quality 

and efficiency through shared infrastructure and can 

reduce overall sample size through sharing of a 

control arm. Basket trials are also capable of reducing 

overall sample size by taking advantage of the ability 

to borrow information across population groups. This 

reduction in minimum sample size is a crucial 

advantage of using master protocol, especially as the 

medical field continues to push toward personalized 

medicine and the standard randomized clinical trial 

design no longer suffices. Major differences between 

the three subsets of clinical trials that utilize master 

protocol and the standard clinical trial are 

summarized in the following table. 

For simple interpretation, let θ1, θk be the treatment 

effects, denoting the difference in the mean outcome 

between treatment and control, in the first to kth 

subgroups. For the basket trial example, we consider 

the example of a pooled analysis where the study 

design incorporates pruning of indications, such that 

of the k initial subgroups, only p subgroups remain in 

the final pooled analysis. Statistics surrounding 

applications and sample sizes across each type of 

trial utilizing master protocol was determined by Park 

and others (2019). The analogous characteristics for 

the standard 1:1 trial is based off of FDA regulations. 

Comparing the median duration and sample size 

between trials that utilize master protocol and those 

recommended by the FDA for classical trials, the 

potential for such trials to substantially decrease the 

minimum study length and sample size needed 

becomes clear. 

Regulatory Perspectives 

While the FDA has endorsed the use of master 

protocols, this does not cover first-in-human or early-

stage clinical trials using expansion cohorts to 

expedite drug development. FDA recommends that 

for drugs evaluated in a master protocol, the 

recommended phase II dose (RP2D) should have 

already been established. Furthermore, because of 

the increased complexity surrounding master protocol 

designs, the FDA recommends sponsors engage 

them early in study planning. The FDA also offers 

specific design considerations in master protocols, 

including, but not limited to, the use of a single 

common control arm in randomized umbrella trial 

designs, the determination of biomarker-defined 

subgroup assignment, and the addition and/or 

discontinuation of treatment arms.  

Early communication with the FDA allows for key 

agreements on the design and conduct of the protocol 

to be reached, avoiding potential challenges 

anticipated by the FDA, which include: 

(i) Difficulty attributing adverse events to one or more 

investigational drugs when multiple drugs are 

administered within each investigational treatment 

arm and the trial lacks a single internal control for 

those drugs 

(ii) Difficulty assessing the safety profile of any given 

investigational drug may when multiple drugs are 

being studied at the same time 

(iii) Potential overinterpretation in findings, resulting in 

delays in drug development 

In addition to following the FDA guidance for master 

protocol designs, master protocol trials that 

incorporate adaptive designs must also provide all 

information described in the guidances for 

industry Adaptive Designs for Clinical Trials of Drugs  

Table 1: Comparison of Master Protocol Designs with Classical Trial Design 
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Characteristic Basket Trial Umbrella Trial Platform Trial Classical Trial 

Objective To study a single 

targeted therapy in 

the context of 

multiple diseases or 

disease 

subtypes 

To study multiple 

targeted therapies in 

the context of a single 

disease 

To study multiple targeted 

therapies in the context of 

a single disease in a 

perpetual manner 

(therapies are allowed to 

enter or 

leave the study) 

To study a single 

therapy in the context of 

a single disease 

Applications Oncology, hereditary 

periodic fevers, 

complement- 

mediated 

disorders 

Oncology Oncology, influenza, 

pneumonia, pre- operative 

surgery, Alzheimer’s 

disease, COVID-19 

Found in all areas of 

clinical trials 

Null Hypothesis 𝒌 

𝑯𝟎: ⋂ 𝜃𝒊 = 𝟎 

𝒊=𝟏 

𝒌 

𝑯𝟎: ⋂ 𝜽𝒊 = 𝟎 

𝒊=𝟏 

𝑯𝟎: {𝑯𝟎𝟏: 𝜃𝟏 = 𝟎, 

𝑯𝟎𝟐: 𝜃𝟐 = 𝟎, … } 

𝑯𝟎: 𝜃 = 𝟎 

Alternative 

Hypothesis 

𝒑 

𝑯𝟏: ⋂ 𝜃𝒊 ≠ 𝟎 

𝒊=𝟏 

𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒑 < 𝒌 

𝒌 

𝑯𝟏: ⋃ 𝜽𝒊 ≠ 𝟎 

𝒊=𝟏 

𝑯𝟏: {𝑯𝟏𝟏: 𝜃𝟏 ≠ 𝟎, 

𝑯𝟏𝟐: 𝜃𝟐 ≠ 𝟎, … } 

𝑯𝟏: 𝜃 ≠ 𝟎 

Sample Size 

(Median [Q1, 

Q3]) 

205 [90, 500] 346 [252, 565] 892 [255, 1835] Phase I: 20-100 Phase 

II: several hundred 

Phase III: 300-3000 

Duration in 52.3 [42.9, 74.1] 60.9 [46.9, 81.3] 58.9 [36.9, 101.3] Phase I: several 

 

and Biologics and Enrichment Strategies for Clinical 

Trials to Support Determination of Effectiveness of 

Human Drugs and Biological Products. 

Recently, the FDA has encouraged the use of master 

protocols in the setting of a public health emergency 

such as the current COVID-19 pandemic, where there 

is a critical need for the efficient development of 

therapies. FDA expects master protocols to continue 

to play an important role in addressing the public 

health needs created by the current COVID-19 

pandemic, as well as in future pandemics that might 

occur.  

Current Challenging Issues and Possible 

Solutions 

Sample Size and Power 

In a standard comparative clinical trial, 

comprehensive research has been conducted 

regarding minimum sample size and power 

computations. In most cases for a standard clinical 

trial, multiple closed form sample calculations have 

been found and the respective advantages and 

disadvantages of each method have been compared. 

However, no such closed form exists for the sample 

size calculation in master protocol trials. As such, 

most trials rely on extensive simulation-based 

methods to conduct the power calculation for sample 

size, but these simulation-based methods quickly 

become complicated and require large amounts of 

computing power. Furthermore, lack of 

methodological research conducted in this area has 

led to many power calculations that don’t take 

advantage of borrowing information from the different 

subtrials within a master protocol trial.  

Basket Trials – Basket trials have the potential to 

increase power by taking advantage of information-

borrowing between different subgroups. However, the 

most widely implemented method is to calculate the 

minimum sample size for each subgroup treated 

separately, assigning the sum of each subgroup’s 

sample size as the total minimum sample size. This 

method is largely implemented because of its 

simplicity and similarity to sample size and power 

computations in standard clinical trials. However, this 

does not take advantage of the ability to borrow 

information across subgroups.  

Potential solutions for sample size determination in 

basket trials have largely been found by taking on a 

Bayesian approach. Recently, Zheng and others 

(2022) have developed a new Bayesian sample size 

closed-form formula for basket trials that permit 

borrowing of information between commensurate 

subsets. 

Umbrella Trials – Umbrella trials can save on sample 

size by sharing the same control arm across the many 

treatment arms. However, for umbrella trials, the 

largest issue is the lack of a universal definition of 

study power in a multi-arm setting. Bennett and 

Mander (2020) defined the overall study power as the 
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probability of detecting all treatments that are better 

than the control, but Ren (2021) defined the overall 

study power to be the probability of detecting at least 

one effective treatment when all arms are active. 

Furthermore, Ouma and others (2022) found in a 

systematic review of umbrella trials that it was 

impossible to ascertain how the sample size was 

determined in a majority of trials (55.3%). Among the 

trials that did report sample size computation, most 

determined the sample size required for each subtrial 

separately.  

Most potential solutions for sample size determination 

for umbrella trials utilize a Bayesian hierarchical 

approach. Kang and others (2021) developed a two-

stage umbrella Phase II design with effect size 

clustering and information-borrowing across multiple 

biomarker-treatment pairs using a Bayesian 

hierarchical clustered design. Zang and others (2019) 

also proposed a Bayesian hierarchical model 

combined with an adaptive design. However, current 

literature on statistical methods for umbrella trials 

remains sparse and no agreed upon approach is 

taken as some trials opt for a pooled approach while 

others opt for regarding the treatment arms as 

separate. Consequently, the use of simulation is often 

required. 

Platform Trials – Platform trials share the same 

sample size advantage as umbrella trials by being 

able to share the same control arms across the many 

treatment arms. Platform trials also have the 

advantage of using various adaptive designs because 

of their ongoing nature. Many platform trials include 

adaptive patient allocation through response-

adaptive randomization rules, which preferentially 

assigns patients to interventions that perform most 

favorably. However, platform trials vary incredibly as 

a result of the common practice of including adaptive 

design and randomization. Consequently, there is no 

closed-form expression for sample size or power 

calculations. Furthermore, due to the greater 

variability within platform trials, each new platform trial 

would be required to perform power calculation for 

sample size determination through extensive clinical 

trial simulations. In other words, sample size 

calculations for one platform trial aren’t typically used 

to significantly inform sample size calculations for 

other platform trials. 

Consequently, platform trials typically determine 

sample size and power as well as other parts of their 

statistical design through simulations of the trial 

across a wide range of scenarios. Tolles and others 

(2022) designed an adaptive platform trial for 

evaluating treatments in patients with life-threatening 

hemorrhage and determined minimum sample size 

through simulations prior to trial implementation. 

Similarly, in the UPMC OPTIMISE-C19 trial, Huang et 

al. (2021) utilized a Bayesian adaptive design and 

response adaptive randomization to ensure ability to 

provide statistical significance despite variable 

sample size. Platform trials exclusively seem to 

determine sample size through simulations of their 

specific trial design. 

Controlling Type I Error Rate 

Each subset of clinical trials that utilize master 

protocol requires additional statistical considerations 

for controlling the overall Type I error rate. Basket 

trials largely need to consider controlling Type I error 

if pruning is included in the trial design. When basket 

trials prune indications that are doing poorly at interim 

endpoints, this can inflate the false positive rate for 

the pooled analysis after pruning. This error has been 

termed “random high bias”. The most common 

solution to controlling this type of bias has been to 

simply adjust the significance level α to control for 

Type I error.  

Umbrella and platform trials, on the other hand, 

typically have greater reason to control for Type I 

error as a result of multiplicity concerns, which will be 

discussed further in the next section. Controlling the 

overall Type I error rate becomes difficult because 

there is no consensus on which Type I error rate 

should be controlled for (i.e., the family-wise error 

rate, the per-comparison error rate, etc.). 

For multi-arm, response-adaptive, 2-stage designs, 

methods to control the family-wise Type I error rate 

were proposed by Gutjahr and others (2011). 

Robertson and Wason (2019) proposed procedures 

to control the family-wise Type I error rate in certain 

scenarios with response-adaptive randomization for 

normally distributed endpoints. Ghosh and others 

(2017) developed a frequentist approach for platform 

trials that guarantees strong control of the Type I error 

rate. 

Multiplicity 

Multiplicity concerns arise when multiple inferences 

are being tested simultaneously. Consequently, 

multiplicity concerns are largely present in umbrella 

and platform trials where multiple treatment effects 

are being compared. If each hypothesis is tested with 

the same significance level, testing more treatments 

increases the likelihood of encountering a false 

positive. For basket trials, on the other hand, if a 

pooled analysis is conducted, then there is no 

multiplicity concern present. However, if the 

subgroups are analyzed in isolation, then there would 
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be multiplicity concerns present that could potentially 

increase the false positive error rate.  

Conventionally, adjustments are made to the 

significance level when multiplicity concerns are 

present. However, Woodcock and LaVange (2017) 

note that as precision medicine focuses on smaller 

and smaller disease subtypes, traditional methods for 

multiplicity adjustment become impractical. Stallard 

and others (2019) have argued that since umbrella 

trials and platform trials compare treatment arms 

within subgroups, there is no need to adjust for 

multiplicity arising from the testing of multiple 

hypotheses. This is due to the view that the sub-

studies, though run under a single protocol, are 

essentially independent trials with each subgroup 

receiving a different experimental treatment. As such, 

the efficacy of each treatment is only assessed once. 

However, Howard and others (2018), upon 

investigating multi-arm designs where the control arm 

is shared across multiple treatment arms, defined 

new Type I error rates of interest and determined 

which Type I error rates should be controlled for 

based on the nature of the hypothesis tested. Hlavin 

and others (2017) have also determined conditions 

under which the family-wise error rate can be 

controlled in multi-arm trials when performing many-

to-one comparisons.  

For basket trials where inferences are made among 

subgroups within treatment arms, Stallard and others 

(2019) propose making adjustments for multiplicity by 

using a Holm-Bonferroni correction or a method 

allowing for overlapping subgroups.  

Pooled Analysis 

Opportunities for pruning are created in basket trials 

when the study design includes interim surrogate 

endpoints. This mitigates the risk of ineffective 

indications being included in the final pool. However, 

for the remaining indications, the patients who 

contributed data at the interim analysis will also be the 

ones includes in the final analysis. This may affect the 

false positive rate in pooled analysis because of the 

re-use of internal study information. After pruning, 

sample size readjustment is then required to maintain 

the power of the final pooled analysis, and the plan 

for the readjustment must be pre-specified.  

Chen and others (2016) compared several sample 

size adjustment strategies and noted that the most 

aggressive strategy provided the best maintenance of 

reasonable power. This strategy consisted of 

increasing the numbers of patients in the remaining 

indications to keep the size of the final pooled 

analysis as originally planned. However, for pruning 

to be effective in mitigating the risk of pooling, the bar 

for being included in the final pooled analysis is set 

relatively high. As such, pruning does not show that 

the indication is not worthy of further investigation, 

only that the indication is too high risk to remain in the 

basket. 

Treatment Imbalance and Heterogeneity 

Heterogeneity is also of concern in basket trials as the 

basket may contain a heterogeneous mixture of 

ineffective and effective indications where both move 

on to the final stage and the pooled analysis. In such 

a case, the ineffective indications included in the 

pooled analysis may dilute the overall pooled result, 

resulting in a false negative with respect to the 

effective indications. On the other hand, the effective 

indications could dominate the average result, 

leading to the pool of indications being approved and 

a false positive with respect to the ineffective 

indications. While a subgroup analysis for known 

predictive and prognostic factors is typically 

performed, these subgroup analyses are typically 

underpowered and provide only qualitative 

information.  

Because basket trials aim to examine therapies in 

varying populations, a natural consequence of this 

trial design is that patients may respond differently to 

the same treatment due to their distinct disease 

subtypes. Regarding the subgroups in isolation takes 

into account the potential heterogeneity in the 

subgroups, but it treats the analysis of each subgroup 

completely separately. Consequently, this strategy 

doesn’t realize the full potential of treating the 

combined subgroups as a single study in basket trials 

while still facing new concerns of multiplicity and 

potential low power issues due to small sample sizes. 

More sophisticated analysis models, which feature 

borrowing of information between subgroups, have 

been proposed. Thall (2003) and Berry (2013) 

proposed fitting a Bayesian hierarchical random-

effects model under the assumption that subgroup-

specific treatment effects are exchangeable. In other 

words, that the treatment effects for each subgroup 

are random samples drawn from the same normal 

distribution with unknown mean and variance. This 

methodology has since been extended to a finite 

mixture of exchangeability distributions (Liu et al. 

2017; Chu and Yuan 2018; Jin et al. 2020) and non-

exchangeability distributions (Neuenschwander et al. 

2016) to avoid over-representing extreme treatment 

effects. A common theme among proposed basket 

trial designs is the use of a Bayesian framework to 

mitigate the effects of heterogeneity. 
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Population Drift 

Population drift, also known as temporal drift, arises 

as a consequence of platform trials’ ongoing nature 

and the use of one shared control arm. The issue 

revolves around determining how to manage 

comparisons between different treatment groups and 

the control. Because the platform trial design allows 

for treatments to enter the study after the start of the 

study, the control arm may include both concurrent 

subjects (control subjects added when the treatment 

arm is in the platform) and non-concurrent subjects 

(control subjects added before the treatment had 

been added to the platform). Consequently, the 

unadjusted treatment-control comparisons are likely 

to be biased due to trends over time like changing 

inclusion/exclusion criteria or changing standard of 

care. When population drift is present and not 

considered, it can also result in Type I error rate 

inflation or deflation as well as biased estimates. 

The most intuitive solution is to limit the extent to 

which each control patient can influence analysis 

based on their time of enrollment. In other words, 

interim analyses at some trial time t would only 

include control patients who were enrolled within 

some pre-determined interval of time from t. This 

would limit the amount of population drift between 

control subjects included in each analysis but would 

also limit the number of control subjects included in 

each analysis. Overbey et al. (2022) explored several 

methods to incorporate nonconcurrent control 

subjects, including test-then-pool, fixed power prior, 

dynamic power prior, and multi-source 

exchangeability model approaches. However, they 

concluded that compared to using concurrent control 

subjects only, these approaches could not guarantee 

type I error control or unbiased estimates. Saville and 

others (2022) proposed a “Bayesian Time Machine” 

that models potential population drift and smooths 

estimates across time using a second-order normal 

dynamic linear model. 

Cases Studies 

Since master protocol trials were initially designed for 

oncology due to the prevalence of targeted therapies 

in cancer research, master protocols continue to still 

be almost exclusively used in oncology. Furthermore, 

most master protocol study designs are still based off 

early master protocol studies involved in cancer 

therapeutics like ISPY-2 (platform trial for breast 

cancer patients) and IMPACT-2 (basket trial that 

studied personalized medicine across different 

tumour types). However, as the shift towards 

precision medicine and personalized healthcare 

becomes increasingly popular, the use of master 

protocols in clinical trials is becoming more prevalent 

in other therapeutic areas.  

ROAR: Basket Trial Example 

The Rare Oncology Agnostic Research (ROAR) trial 

was a Phase II, open-label, single-arm, multi-center 

basket trial that aimed to evaluate the activity and 

safety of dabrafenib and trametinib combination 

therapy in patients with BRAF-mutated biliary tract 

cancer. The study is currently still active and have 

obtained results from an interim analysis.  

A total of 43 patients were enrolled to the study and 

evaluated. They had planned to enroll a maximum of 

25 participants for every histological cohort in the 

primary analysis group. They determined the 

minimum sample size by evaluating the performance 

of the design through simulation studies that 

considered various assumptions for the distribution of 

the true overall response rates across the histological 

cohorts and accounted for anticipated small sample 

sizes due to low prevalence.  

The design maintains 84-98% power and a Type I 

error rate of no more than 0.04 when treatment effects 

are similar across all histological cohorts. To increase 

the precision of the outcome estimates in the small 

sample size, a Bayesian hierarchical model that 

borrowed overall response rate information across 

histological cohorts was used. More borrowing was 

allowed if the response rates were similar. The 

Bayesian estimate of overall response was calculated 

from the primary analysis cohort and used the 

posterior mean and corresponding 95% credibility 

interval. 

The study seemed to skillfully take advantage of the 

ability to borrow information across various 

histological cohorts in order to increase the precision 

of the overall response rate estimates, allowing for 

lower minimum sample size per cohort. This is 

particularly important in this study as it studies a rare 

disease. Such a strategy also allowed greater 

flexibility in the amount of information borrowed 

across certain subsets of cohorts. However, the study 

protocol did not include central confirmation of 

histology, which resulted in similar histological 

subtypes being reported with different names. This 

would affect the measured treatment effects in each 

cohort. Furthermore, while the study design was 

evaluated to maintain sufficient power and control of 

Type I error rate, it only holds true under the 

assumption that the treatment effects are similar 

across all histological cohorts, which may not hold. A 

more conservative approach may be to only rely on 

the assumption of exchangeability in a subset of 
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histological cohorts, which could also help to control for potential heterogeneity across cohorts.

  

Fig 1: Trial Schema for ROAR1 

[1] Figure was reproduced from figure found in 

“Dabrafenib plus trametinib in patients with BRAF 

V600E-mutated biliary tract cancer (ROAR): a phase 

2, open-label, single-arm, multicentre basket trial” by 

V. Subbiah, U. Lassen, et al., 2020, Lancet Oncology, 

21, p. 1234-1243, Copyright 2020 by Elsevier Ltd. 

FOCUS4: Umbrella Trial Example 

FOCUS4 is a multistage umbrella trial that sought to 

evaluate a number of treatments and biomarkers for 

advanced colorectal cancer. The proposal aimed to 

answer if targeted therapies provide activity signals in 

different biomarker-defined populations and if these 

definitively improve outcomes. The protocol 

randomized novel agents against placebo 

concurrently across a number of different biomarker-

defined population-enriched cohorts, including but not 

limited to BRAF mutation, activated AKT pathways, 

and KRAS and NRAS mutations.  

In this trial, each treatment is evaluated first in the 

cohort of patients for whom the biomarker is 

hypothesized to be predictive of response. Then, if 

appropriate, the hypothesis of the predictive ability of 

the biomarker is then tested by evaluating the agent 

in the biomarker-negative patients.  

Sample size calculations were performed using the 

nstage program in STATA software published by 

Barthel and others (2009). For each of the subtrials 

within FOCUS4, the overall power is maintained at 

80%, allowing for multiple interim data looks, with a 

maximum 5% Type I error rate. To maintain a power 

of 80%, the power of each subtrial for the primary 

analysis varies from 85-95%. Each biomarker-defined 

subtrial was considered separately. Furthermore, an 

independent data monitoring committee can advise 

early closure of a trial in the event of overwhelming 

evidence of efficacy at a significance level of 0.001. 

The trials adopted this approach to preserve the 

overall Type I error rate at the end of the trial. 

This trial proposed an efficient approach that allows 

for multiple treatments and multiple biomarkers to be 

evaluated while including measures to control Type I 

error rate and achieve sufficient power. In particular, 

the trial included adaptive design components such 

as early discontinuation due to either the futility rule 

or success criteria as well as both phase II and phase 

III components allowing treatments to move 

seamlessly between phases. However, the nstage 

program in STATA seems designed for multi-arm 

multi-stage (MAMS) studies, which feature a few 

differences when compared to this trial: (1) MAMS 

typically have 1 common control arm whereas 

FOCUS4 proposes a control arm for each different 

biomarker group, and (2) MAMS assumes 

randomized assignment to each of the treatment 

arms whereas FOCUS4 is biomarker-dependent and 

randomizes between placebo and treatment within 

each biomarker sub-population. Furthermore, this 

method of conducting sample size calculations does 

not take advantage of information borrowing across 

the biomarker sub-populations. A potential approach 

could be that proposed by Kang et al. (2021), which 

features information borrowing across multiple 

biomarker-treatment pairs using a Bayesian 

hierarchical design, or that proposed by Zang et al. 

(2019) that combines a Bayesian hierarchical model 

with an adaptive design.
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Fig 2: Trial Schema for FOCUS2 

2 Figure was reproduced from figure found in 

“Evaluating many treatments and biomarkers in 

oncology: a new design” by R. Kaplan, T. Maughan, 

et al., 2013, Journal of Clinical Oncology, 31, p. 4562-

4568, Copyright 2013 by the American Society of 

Clinical Oncology. 

TICO MAMS is a global multi-arm, multi-stage 

platform master protocol trial that evaluates the safety 

and efficacy of anti-viral therapeutic agents for adults 

hospitalized with COVID-19. TICO planned to enroll 

300 patients at Stage 1 with subsequent expansion to 

full sample size and an expanded target population in 

Stage 2 if the agent shows an acceptable safety 

profile and evidence of efficacy. The trials within TICO 

are randomized, double blinded, placebo-controlled 

and phase III. Each randomized subject could 

potentially receive any of the active agents or 

matching placebo for which they are eligible. The 

placebo group is then pooled such that those 

randomized to the placebo of one agent will be part of 

the control group for other agents to which the 

participant could have been allocated. This allows for 

a greater probability that a participant will receive an 

active agent when there are more agents in the 

platform.  

In Stage 1, the planned sample size for each 

investigational agent and concurrently randomized 

pooled placebo arm is 300 patients under a 1:1 

randomization, using proportional odds models and 

the estimated summary odds ratio to compare the 

investigational agent and the placebo. This sample 

size was determined to be sufficient to detect an OR 

of 1.60 or greater with 95% power. This was done with 

a relatively high Type I error rate of 0.30, which was 

based on previous work in MAMS cancer trials to 

avoid premature futility declarations. The final sample 

size in Stage 2 will be event driven and was estimated 

at 1,000 patients. No adjustment will be made for the 

number of other agents being tested in TICO trials. 

Since the time of conception, TICO has studied 3 

different investigational drugs. 

TICO seems to be a successfully implemented 

platform trial, generating results for three novel 

agents so far with two other agents still under study 

and future agents ready to enter. Type I error rate was 

controlled using the Lan-DeMets spending function 

analogue of the O’Brien-Fleming Boundaries. Sample 

size considerations were made for both the initial 

futility assessment and the final assessment of 

efficacy with power aimed at 90% and an effect size 

of 25% increase in the sustained recovery rate for the 

treatment compared to the placebo. Furthermore, 

TICO was able to take advantage of the use of shared 

control arm for each of the different treatment arms, 

allowing for both a smaller minimum sample size 

requirement and a greater likelihood of being 

randomized into a treatment arm. To avoid the issue 

of population drift, the study chose to only share 

placebo across agents that were studied at the same 

time – in other words, only concurrent control subjects 

were used. This approach is reasonable as most 

proposed methods of including non-concurrent 

control subjects still fall short in controlling for the 

inflated Type I error rate. However, the “Bayesian 

Time Machine” proposed by Saville et al. (2022) 

models potential population drift using a second-order 

normal dynamic linear model, which may pose as a 

viable alternative that allows for the use of non-

concurrent controls.
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Fig 3: Agent Entry and Progression through TICO Study3 

3 Figure was reproduced from figure found in “Design 

and implementation of an international, multi-arm, 

multi-stage platform master protocol for trials of novel 

SARS-CoV-2 antiviral agents: Therapeutics for 

Inpatients with COVID-19 (TICO/ACTIV-3)” by D. 

Murray, A. Babiker, et al., 2021, Clinical Trials, 19, p. 

52-61, Copyright 2022 by SAGE Publications. 

Concluding Remarks 

As indicated in the previous sections, the use of 

master protocol design in clinical trials have the ability 

to investigate either multiple therapies or multiple 

populations at the same time in one study. However, 

statistical methodologies for data analysis are not 

fully developed. In practice, it is suggested that 

possible solutions for addressing the challenging 

issues such as insufficient sample size, 

heterogeneity, multiplicity, possible population drift, 

and the control of overall type I error rate should be 

taken into consideration for an accurate and reliable 

assessment of the treatment effect under 

investigation.  

In general, there is no one preferred approach which 

is superior to others when it comes to addressing 

these issues. Rather, the most appropriate approach 

will likely depend on the study objectives, study 

design, and the nature of the research question 

asked. However, some common trends do seem to 

arise. In particular, many proposed solutions seem to 

take on a Bayesian approach such as using a 

Bayesian hierarchical model for either sample size 

determination or to control for potential heterogeneity 

between treatment groups.  

Possible approaches range from more conservative 

to less conservative methods. More conservative 

methods rely on fewer assumptions that may not hold 

due to the issues discussed in this paper. Less 

conservative methods take greater advantage of the 

potential ability to share information across the 

multiple subtrials. While the less conservative 

methods have the potential to increase study power, 

bias and inflated Type I error will be exacerbated 

when their assumptions do not hold. Consequently, it 

is important to comprehensively assess the 

assumptions that are made, especially as they pertain 

to exchangeability of treatment groups. 

In practice, for a more efficient and reliable 

assessment of the test treatment under investigation, 

it is also suggested that the concept of master 
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protocol design should be applied in conjunction with 

some complex innovative designs (CIDs) such as 

multi-stage (e.g., two-stage) seamless adaptive trial 

design, the innovative n-of-1 trial design, and 

Bayesian sequential adaptive design with appropriate 

selection of a prior. The use of the concept of master 

protocol in tandem with an innovative complex design 

cannot only provide an efficient, accurate, and 

reliable assessment of the test treatment under study, 

but also shorten the drug development process and 

increase the probability of success of the test 

treatment under investigation. 
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