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Introduction 

The study of the brain in norm and pathology is an 

urgent and promising direction of modern science 

and, in this regard, a frequent topic of dissertation 

research. Cerebral ischemia leads to a number of 

general and local metabolic and functional disorders, 

the pathogenesis of which is complex, multifaceted 

and largely unclear [1-14]. 

The aim was to change the morphology of neurons in 

the parietal cortex and hippocampus of rats in the 

dynamics of stepwise subtotal cerebral ischemia  

Methods 

The experiments were performed on 40 male mongrel 

white rats weighing 260 ± 20 g in compliance with the 

requirements of the Directive of the European 

Parliament and of the Council No. 2010/63/EU of 

22.09.2010 on the protection of animals used for 

scientific purposes. 

The choice of experimental animals is due to the 

similarity of the angioarchitectonics of the rat and 

human brains. Modeling of cerebral ischemia (CI) was 

performed under intravenous thiopental anesthesia 

(40-50 mg/kg). 

The studies used models of step subtotal (SSCI) 

cerebral ischemia. 

Stepwise subtotal CI (SSCI) was performed by 

sequentially dressing the CCA at intervals of 1 day 

(subgroup 1), 3 days (subgroup 2) or 7 days 

(subgroup 3). The material was taken 1 hour (n=6) 

and 1 day (n=6) after the dressing of the second CCA 

in each of the groups. 

Morphological study of the size and shape of the 

pericaryons of neurons, determination of the number 

of neurons with varying degrees of cytoplasmic 

chromatophilia was carried out [2-4].  

To prevent systematic measurement errors, brain 

samples from the compared control and experimental 

animals were processed under the same conditions.  

As a result of morphometric and cytophotometric 

studies, quantitative continuous data were obtained, 

which were processed using the licensed computer 

program Statistica 10.0 for Windows (StatSoft, Inc., 

USA). 

Since the experiment used small samples that had an 
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abnormal distribution, the analysis was carried out 

using nonparametric statistics. The data is presented 

in the form of Me (LQ; UQ), where Me - the median, 

LQ - the value of the lower quartile; UQ - the value of 

the upper quartile. The differences between the 

groups were considered significant at p<0> 

Results 

There were no changes in the morphology of neurons 

within one subgroup after 1 hour and 1 day after 

ligation of the second CCA in all groups. 

In the parietal cortex, compared with the value of the 

indicator in the control group, the S of pericaryons of 

neurons in the 1st subgroup decreased by 48% one 

hour after the second ligation (p<0> 

At the same time, the area of pericaryons of neurons 

in the 2nd subgroup was less by 10% (p<0> 

Compared with subgroup 1, S of neurons in the 3rd 

subgroup was 26% less (p<0> 

Compared with the control, the form factor of neuronal 

pericarions in subgroup 1 decreased by 11% (p<0> 

In subgroup 2, the form factor was 12.5% less than in 

subgroup 1 (p<0> 

Compared with the value in the 1st subgroup, in 

subgroup 3, 1 hour after dressing, the form factor did 

not change, and after 1 day it decreased by 12.5% 

(p<0> 

In the 3rd subgroup, the form factor was 12.5% less 

after an hour than in the 2nd subgroup (p<0> 

The neuronal pericaryon elongation factor increased 

in the 1st subgroup by 8% (p<0> 

The elongation factor of pericaryons of neurons was 

in the 2nd subgroup greater than in the 1st, by 7% 

(p<0> 

In subgroup 3, the elongation factor after 1 hour was 

greater than in subgroup 2 by 7% (p<0> 

In the hippocampus, the area of pericaryons of 

neurons in the 1st subgroup SSCI decreased by 28% 

(p<0> 

In the 2nd subgroup, there was a decrease in S by 

17% (p<0> 

Compared with subgroup 1, in the 3rd subgroup, the 

area of neurons decreased by 27% (p<0> 

The area in the 3rd subgroup an hour later was 12% 

less than in subgroup 2 (p<0> 

The form factor in the 1st subgroup an hour and a day 

after the second dressing decreased by 11% 

compared to the control (p<0> 

In the 2nd subgroup, it was 12.5% less (p<0> 

Compared with subgroup 1, in subgroup 3, the form 

factor decreased by 12.5 

Discussion 

With a lack of oxygen in the brain, structural 

restructuring begins. There is a deformation of the 

pericaryons associated with a violation of the water 

balance of the cell [4,5].  

The study found that stepwise bilateral ligation of 

CCA with an interval of 1 and 3 days leads to 

irreversible damage to the neurons of the parietal 

cortex and hippocampus of rats, which manifests 

itself in a decrease in their size, deformation of 

pericaryons, an increased number of shrunken 

neurons and shadow cells, most of these disorders 

were expressed in subgroup 3. When both CCA were 

ligated with an interval of 7 days, there were fewer 

negative changes, especially in the hippocampus: the 

size of the pericaryons of neurons and the ratio of 

neurons according to the degree of chromatophilia of 

the cytoplasm did not differ so much from the 

indicators in the control group [4]. According to the 

literature data, 7 days after hypoxia caused by 

ligation, due to the development of adaptive 

mechanisms, there is a tendency to improve 

microcirculation: the patency of capillaries is restored, 

their number and diameter increase, which leads to 

an increase in the intensity of cerebral blood flow. 

Improving cerebral circulation is one of the important 

effects of adaptation to hypoxia. It is based on an 

increase in vascular density [10-14]. 

This neovascularization is explained by the 

production of NO and activation of hypoxia-induced 

transcription factor (HIF-1). This factor regulates the 

adaptive responses of the cell to changes in tissue 

oxygenation, improves oxygen delivery due to 

stimulation of erythropoiesis, angiogenesis, humoral 

and metabolic processes (activation of glucose 

transport, increased glycolytic production of ATP, ion 

transport) and cell proliferation. In addition to HIF, 

other hypoxia–sensitive transcription factors have 

recently been discovered-metallotranscription factor 

(metaltranscription factor–1 - MTF-1), nuclear factor 

kappa B (NF–kB - nuclear factor kappa kB), c-Fos 

and c-Jun, etc..When the brain adapts to hypoxia, the 

immunoreactivity to NF-kB and phosphorylated 

CREB (c-AMP response element binding protein) 

increases, especially in the hippocampus [2-10]. 

The activity of the key enzyme of the respiratory chain 

NADPH-cytochrome C-oxidoreductase increases in 

neurons. Its affinity for NADPH decreases, which 

increases the resistance of mitochondria to oxygen. 

With a decrease in the intensity of oxidative 

processes, a more efficient work of the respiratory 

chain was noted – a "paradoxical effect" of adaptation 
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to hypoxia.  There is a clear inverse relationship 

between the phylogenetic age of the cortex and the 

severity of its adaptive variability, which explains the 

better state of hippocampal neurons in CI compared 

to the parietal cortex [7,11-14]. 

Thus, with stepwise bilateral ligation of both common 

carotid arteries with an interval of 7 days, negative 

changes were least pronounced, especially in the 

hippocampus. The longer the interval between 

dressings, the more effectively neurons adapt to lack 

of oxygen, which makes it possible to further study in 

more detail the dynamics of the mechanisms of 

damage development and adaptive changes in the 

brain. 

The conducted studies have shown the dependence 

of the severity of brain damage on the interval 

between the cessation of blood flow for one and both 

CCA. Adaptation took place better with a 7-day 

interval between dressings, while with a dressing with 

an interval of 1 day, the degree of morphological 

changes was maximal, which indicates insufficient 

resources for the implementation of adaptation 

mechanisms. 
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